BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 32335820)

  • 21. Cardiac 3D printing for better understanding of congenital heart disease.
    Hadeed K; Acar P; Dulac Y; Cuttone F; Alacoque X; Karsenty C
    Arch Cardiovasc Dis; 2018 Jan; 111(1):1-4. PubMed ID: 29158165
    [No Abstract]   [Full Text] [Related]  

  • 22. Three-dimensional echocardiography in congenital heart disease: The next steps.
    Simpson JM
    Arch Cardiovasc Dis; 2016 Feb; 109(2):81-3. PubMed ID: 26707574
    [No Abstract]   [Full Text] [Related]  

  • 23. Emerging 3D technologies and applications within congenital heart disease: teach, predict, plan and guide.
    Salavitabar A; Figueroa CA; Lu JC; Owens ST; Axelrod DM; Zampi JD
    Future Cardiol; 2020 Nov; 16(6):695-709. PubMed ID: 32628520
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Three-Dimensional Congenital Heart Models Created With Free Software and a Desktop Printer: Assessment of Accuracy, Technical Aspects, and Clinical Use.
    Perens G; Chyu J; McHenry K; Yoshida T; Finn JP
    World J Pediatr Congenit Heart Surg; 2020 Nov; 11(6):797-801. PubMed ID: 33164685
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Real-time three dimensional CT and MRI to guide interventions for congenital heart disease and acquired pulmonary vein stenosis.
    Suntharos P; Setser RM; Bradley-Skelton S; Prieto LR
    Int J Cardiovasc Imaging; 2017 Oct; 33(10):1619-1626. PubMed ID: 28455631
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Three-dimensional echocardiography in congenital heart disease.
    Simpson JM; Miller O
    Arch Cardiovasc Dis; 2011 Jan; 104(1):45-56. PubMed ID: 21276577
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ultrasound-Derived Three-Dimensional Printing in Congenital Heart Disease.
    Samuel BP; Pinto C; Pietila T; Vettukattil JJ
    J Digit Imaging; 2015 Aug; 28(4):459-61. PubMed ID: 25537458
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Utilisation of three-dimensional printed heart models for operative planning of complex congenital heart defects.
    Olejník P; Nosal M; Havran T; Furdova A; Cizmar M; Slabej M; Thurzo A; Vitovic P; Klvac M; Acel T; Masura J
    Kardiol Pol; 2017; 75(5):495-501. PubMed ID: 28281732
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Echocardiography and three-dimensional printing: sound ideas to touch a heart.
    Farooqi KM; Sengupta PP
    J Am Soc Echocardiogr; 2015 Apr; 28(4):398-403. PubMed ID: 25839152
    [No Abstract]   [Full Text] [Related]  

  • 30. First printed 3D heart model based on cardiac magnetic resonance imaging data in Slovakia.
    Olejnik P; Juskanic D; Patrovic L; Halaj M
    Bratisl Lek Listy; 2018; 119(12):781-784. PubMed ID: 30686018
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multimodality 3-dimensional image integration for congenital cardiac catheterization.
    Fagan TE; Truong UT; Jone PN; Bracken J; Quaife R; Hazeem AA; Salcedo EE; Fonseca BM
    Methodist Debakey Cardiovasc J; 2014; 10(2):68-76. PubMed ID: 25114757
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hands-on surgical training of congenital heart surgery using 3-dimensional print models.
    Yoo SJ; Spray T; Austin EH; Yun TJ; van Arsdell GS
    J Thorac Cardiovasc Surg; 2017 Jun; 153(6):1530-1540. PubMed ID: 28268011
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Medical three-dimensional printing opens up new opportunities in cardiology and cardiac surgery.
    Bartel T; Rivard A; Jimenez A; Mestres CA; Müller S
    Eur Heart J; 2018 Apr; 39(15):1246-1254. PubMed ID: 28329105
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Three-dimensional printing models in congenital heart disease education for medical students: a controlled comparative study.
    Su W; Xiao Y; He S; Huang P; Deng X
    BMC Med Educ; 2018 Aug; 18(1):178. PubMed ID: 30068323
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Utility and Scope of Rapid Prototyping in Patients with Complex Muscular Ventricular Septal Defects or Double-Outlet Right Ventricle: Does it Alter Management Decisions?
    Bhatla P; Tretter JT; Ludomirsky A; Argilla M; Latson LA; Chakravarti S; Barker PC; Yoo SJ; McElhinney DB; Wake N; Mosca RS
    Pediatr Cardiol; 2017 Jan; 38(1):103-114. PubMed ID: 27837304
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Advanced Cardiac Imaging for Complex Adult Congenital Heart Diseases.
    Malahfji M; Chamsi-Pasha MA
    Methodist Debakey Cardiovasc J; 2019; 15(2):99-104. PubMed ID: 31384372
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Patient-specific three-dimensional printed heart models benefit preoperative planning for complex congenital heart disease.
    Xu JJ; Luo YJ; Wang JH; Xu WZ; Shi Z; Fu JZ; Shu Q
    World J Pediatr; 2019 Jun; 15(3):246-254. PubMed ID: 30796731
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Innovations in Preoperative Planning: Insights into Another Dimension Using 3D Printing for Cardiac Disease.
    Farooqi KM; Mahmood F
    J Cardiothorac Vasc Anesth; 2018 Aug; 32(4):1937-1945. PubMed ID: 29277300
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Visible Heart® project and free-access website 'Atlas of Human Cardiac Anatomy'.
    Iaizzo PA
    Europace; 2016 Dec; 18(suppl 4):iv163-iv172. PubMed ID: 28011844
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multimodal imaging and three-dimensional cardiac computational modelling in the management of congenital heart disease: The secret to getting ahead is to get started.
    Alacoque X; Cuttone F; Hadeed K; Karsenty C; Drzazga P; Leobon B; Acar P
    Arch Cardiovasc Dis; 2018; 111(6-7):395-398. PubMed ID: 29997058
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.