BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 32337022)

  • 1. Ultrahigh-sensitive optical coherence elastography.
    Li Y; Moon S; Chen JJ; Zhu Z; Chen Z
    Light Sci Appl; 2020; 9():58. PubMed ID: 32337022
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phase-stability optimization of swept-source optical coherence tomography.
    Moon S; Chen Z
    Biomed Opt Express; 2018 Nov; 9(11):5280-5295. PubMed ID: 30460128
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Common-path phase-sensitive optical coherence tomography provides enhanced phase stability and detection sensitivity for dynamic elastography.
    Lan G; Singh M; Larin KV; Twa MD
    Biomed Opt Express; 2017 Nov; 8(11):5253-5266. PubMed ID: 29188118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensitivity enhancement in swept-source optical coherence tomography by parametric balanced detector and amplifier.
    Kang J; Wei X; Li B; Wang X; Yu L; Tan S; Jinata C; Wong KK
    Biomed Opt Express; 2016 Apr; 7(4):1294-304. PubMed ID: 27446655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stable fiber-based polarization-sensitive optical coherence tomography using polarization maintaining common-path interferometer.
    Tang P; Wang R
    J Biomed Opt; 2020 Nov; 25(11):. PubMed ID: 33205634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Motion-artifact-free single shot two-beam optical coherence elastography system.
    Parmar A; Singh K
    J Biomed Opt; 2024 Feb; 29(2):025003. PubMed ID: 38390309
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a handheld compression optical coherence elastography probe with a disposable stress sensor.
    Wang X; Wu Q; Chen J; Mo J
    Opt Lett; 2021 Aug; 46(15):3669-3672. PubMed ID: 34329252
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Common approach for compensation of axial motion artifacts in swept-source OCT and dispersion in Fourier-domain OCT.
    Hillmann D; Bonin T; Lührs C; Franke G; Hagen-Eggert M; Koch P; Hüttmann G
    Opt Express; 2012 Mar; 20(6):6761-76. PubMed ID: 22418560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of image formation in optical coherence elastography using a multiphysics approach.
    Chin L; Curatolo A; Kennedy BF; Doyle BJ; Munro PR; McLaughlin RA; Sampson DD
    Biomed Opt Express; 2014 Sep; 5(9):2913-30. PubMed ID: 25401007
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Demonstration of Shot-noise-limited Swept Source OCT Without Balanced Detection.
    Fathipour V; Schmoll T; Bonakdar A; Wheaton S; Mohseni H
    Sci Rep; 2017 Apr; 7(1):1183. PubMed ID: 28446793
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase stable swept-source optical coherence tomography with active mode-locking laser for contrast enhancements of retinal angiography.
    Park KS; Park E; Lee H; Lee HJ; Lee SW; Eom TJ
    Sci Rep; 2021 Aug; 11(1):16636. PubMed ID: 34404853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diagnostic Accuracy of Cross-Polarization OCT and OCT-Elastography for Differentiation of Breast Cancer Subtypes: Comparative Study.
    Gubarkova EV; Kiseleva EB; Sirotkina MA; Vorontsov DA; Achkasova KA; Kuznetsov SS; Yashin KS; Matveyev AL; Sovetsky AA; Matveev LA; Plekhanov AA; Vorontsov AY; Zaitsev VY; Gladkova ND
    Diagnostics (Basel); 2020 Nov; 10(12):. PubMed ID: 33255263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Speckle-dependent accuracy in phase-sensitive optical coherence tomography.
    Hepburn MS; Foo KY; Wijesinghe P; Munro PRT; Chin L; Kennedy BF
    Opt Express; 2021 May; 29(11):16950-16968. PubMed ID: 34154247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical coherence elastography in ophthalmology.
    Kirby MA; Pelivanov I; Song S; Ambrozinski Ł; Yoon SJ; Gao L; Li D; Shen TT; Wang RK; O'Donnell M
    J Biomed Opt; 2017 Dec; 22(12):1-28. PubMed ID: 29275544
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic optical coherence elastography for skin burn assessment: A preliminary study on mice model.
    Liu H; Yang D; Jia R; Wang W; Shang J; Liu Q; Liang Y
    J Biophotonics; 2024 Jun; ():e202400028. PubMed ID: 38877699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectral phase-based automatic calibration scheme for swept source-based optical coherence tomography systems.
    Ratheesh KM; Seah LK; Murukeshan VM
    Phys Med Biol; 2016 Nov; 61(21):7652-7663. PubMed ID: 27740940
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relaxation time constant based optical coherence elastography.
    Zhang D; Li C; Huang Z
    J Biophotonics; 2020 Jul; 13(7):e201960233. PubMed ID: 32166913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Digital image correlation-based optical coherence elastography.
    Sun C; Standish B; Vuong B; Wen XY; Yang V
    J Biomed Opt; 2013 Dec; 18(12):121515. PubMed ID: 24346855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly phase-stable 200 kHz swept-source optical coherence tomography based on KTN electro-optic deflector.
    Ling Y; Yao X; Hendon CP
    Biomed Opt Express; 2017 Aug; 8(8):3687-3699. PubMed ID: 29082103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved measurement of vibration amplitude in dynamic optical coherence elastography.
    Kennedy BF; Wojtkowski M; Szkulmowski M; Kennedy KM; Karnowski K; Sampson DD
    Biomed Opt Express; 2012 Dec; 3(12):3138-52. PubMed ID: 23243565
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.