BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 32337165)

  • 1. Volumetric analysis and mesh generation of real and artificial microstructural geometries.
    Walters DJ; Luscher DJ; Yeager JD
    MethodsX; 2020; 7():100856. PubMed ID: 32337165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D mesh processing using GAMer 2 to enable reaction-diffusion simulations in realistic cellular geometries.
    Lee CT; Laughlin JG; Angliviel de La Beaumelle N; Amaro RE; McCammon JA; Ramamoorthi R; Holst M; Rangamani P
    PLoS Comput Biol; 2020 Apr; 16(4):e1007756. PubMed ID: 32251448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A universal algorithm for an improved finite element mesh generation Mesh quality assessment in comparison to former automated mesh-generators and an analytic model.
    Kaminsky J; Rodt T; Gharabaghi A; Forster J; Brand G; Samii M
    Med Eng Phys; 2005 Jun; 27(5):383-94. PubMed ID: 15863347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A convenient scheme for coupling a finite element curvilinear mesh to a finite element voxel mesh: application to the heart.
    Hopenfeld B
    Biomed Eng Online; 2006 Nov; 5():60. PubMed ID: 17112373
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Full-hexahedral structured meshing for image-based computational vascular modeling.
    De Santis G; De Beule M; Van Canneyt K; Segers P; Verdonck P; Verhegghe B
    Med Eng Phys; 2011 Dec; 33(10):1318-25. PubMed ID: 21763174
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New software developments for quality mesh generation and optimization from biomedical imaging data.
    Yu Z; Wang J; Gao Z; Xu M; Hoshijima M
    Comput Methods Programs Biomed; 2014; 113(1):226-40. PubMed ID: 24252469
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Realistic forward and inverse model mesh generation for rapid three-dimensional thoracic electrical impedance imaging.
    Zifan A; Liatsis P; Almarzouqi H
    Comput Biol Med; 2019 Apr; 107():97-108. PubMed ID: 30798220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparative study on different methods of automatic mesh generation of human femurs.
    Viceconti M; Bellingeri L; Cristofolini L; Toni A
    Med Eng Phys; 1998 Jan; 20(1):1-10. PubMed ID: 9664280
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated hexahedral mesh generation from biomedical image data: applications in limb prosthetics.
    Zachariah SG; Sanders JE; Turkiyyah GM
    IEEE Trans Rehabil Eng; 1996 Jun; 4(2):91-102. PubMed ID: 8798076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generating smooth surface meshes from multi-region medical images.
    d'Otreppe V; Boman R; Ponthot JP
    Int J Numer Method Biomed Eng; 2012; 28(6-7):642-60. PubMed ID: 25364843
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mesh-morphing algorithms for specimen-specific finite element modeling.
    Sigal IA; Hardisty MR; Whyne CM
    J Biomech; 2008; 41(7):1381-9. PubMed ID: 18397789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Open-Full-Jaw: An open-access dataset and pipeline for finite element models of human jaw.
    Gholamalizadeh T; Moshfeghifar F; Ferguson Z; Schneider T; Panozzo D; Darkner S; Makaremi M; Chan F; Søndergaard PL; Erleben K
    Comput Methods Programs Biomed; 2022 Sep; 224():107009. PubMed ID: 35872385
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Content-Adaptive Finite Element Mesh Generation of 3-D Complex MR Volumes for Bioelectromagnetic Problems.
    Lee W; Kim TS; Cho M; Lee S
    Conf Proc IEEE Eng Med Biol Soc; 2005; 2005():4373-6. PubMed ID: 17281204
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D Mesoscale Finite Element Modelling of Concrete under Uniaxial Loadings.
    Forti T; Batistela G; Forti N; Vianna N
    Materials (Basel); 2020 Oct; 13(20):. PubMed ID: 33076310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An improved method for finite element mesh generation of geometrically complex structures with application to the skullbase.
    Camacho DL; Hopper RH; Lin GM; Myers BS
    J Biomech; 1997 Oct; 30(10):1067-70. PubMed ID: 9391875
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atlas-Based Automatic Generation of Subject-Specific Finite Element Tongue Meshes.
    Bijar A; Rohan PY; Perrier P; Payan Y
    Ann Biomed Eng; 2016 Jan; 44(1):16-34. PubMed ID: 26577253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Open-Source Mesh Generation Platform for Biophysical Modeling Using Realistic Cellular Geometries.
    Lee CT; Laughlin JG; Moody JB; Amaro RE; McCammon JA; Holst M; Rangamani P
    Biophys J; 2020 Mar; 118(5):1003-1008. PubMed ID: 32032503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Template-based finite-element mesh generation from medical images.
    Baghdadi L; Steinman DA; Ladak HM
    Comput Methods Programs Biomed; 2005 Jan; 77(1):11-21. PubMed ID: 15639706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative performance of the finite element method and the boundary element fast multipole method for problems mimicking transcranial magnetic stimulation (TMS).
    Htet AT; Saturnino GB; Burnham EH; Noetscher GM; Nummenmaa A; Makarov SN
    J Neural Eng; 2019 Apr; 16(2):024001. PubMed ID: 30605893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computation of a finite element-conformal tetrahedral mesh approximation for simulated soft tissue deformation using a deformable surface model.
    Weichert F; Schröder A; Landes C; Shamaa A; Awad SK; Walczak L; Müller H; Wagner M
    Med Biol Eng Comput; 2010 Jun; 48(6):597-610. PubMed ID: 20411435
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.