These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 32337253)
1. Preparation of Multiwall Carbon Nanotubes Embedded Electroconductive Multi-Microchannel Scaffolds for Neuron Growth under Electrical Stimulation. Liu Z; Yushan M; Alike Y; Liu Y; Wu S; Ma C; Yusufu A Biomed Res Int; 2020; 2020():4794982. PubMed ID: 32337253 [TBL] [Abstract][Full Text] [Related]
2. Biocompatible chitosan/polyethylene glycol/multi-walled carbon nanotube composite scaffolds for neural tissue engineering. Sang S; Cheng R; Cao Y; Yan Y; Shen Z; Zhao Y; Han Y J Zhejiang Univ Sci B; 2022 Jan; 23(1):58-73. PubMed ID: 35029088 [TBL] [Abstract][Full Text] [Related]
3. The cellular response of nerve cells on poly-l-lysine coated PLGA-MWCNTs aligned nanofibers under electrical stimulation. Wang J; Tian L; Chen N; Ramakrishna S; Mo X Mater Sci Eng C Mater Biol Appl; 2018 Oct; 91():715-726. PubMed ID: 30033306 [TBL] [Abstract][Full Text] [Related]
4. Preparation and characterization of novel functionalized multiwalled carbon nanotubes/chitosan/β-Glycerophosphate scaffolds for bone tissue engineering. Gholizadeh S; Moztarzadeh F; Haghighipour N; Ghazizadeh L; Baghbani F; Shokrgozar MA; Allahyari Z Int J Biol Macromol; 2017 Apr; 97():365-372. PubMed ID: 28064056 [TBL] [Abstract][Full Text] [Related]
5. Effective nerve cell modulation by electrical stimulation of carbon nanotube embedded conductive polymeric scaffolds. Zhou Z; Liu X; Wu W; Park S; Miller Ii AL; Terzic A; Lu L Biomater Sci; 2018 Aug; 6(9):2375-2385. PubMed ID: 30019709 [TBL] [Abstract][Full Text] [Related]
6. Chitin and carbon nanotube composites as biocompatible scaffolds for neuron growth. Singh N; Chen J; Koziol KK; Hallam KR; Janas D; Patil AJ; Strachan A; G Hanley J; Rahatekar SS Nanoscale; 2016 Apr; 8(15):8288-99. PubMed ID: 27031428 [TBL] [Abstract][Full Text] [Related]
7. Skeletal myotube formation enhanced by electrospun polyurethane carbon nanotube scaffolds. Sirivisoot S; Harrison BS Int J Nanomedicine; 2011; 6():2483-97. PubMed ID: 22072883 [TBL] [Abstract][Full Text] [Related]
8. Fabrication and detection of a novel hybrid conductive scaffold based on alginate/gelatin/carboxylated carbon nanotubes (Alg/Gel/mMWCNTs) for neural tissue engineering. Ma H; Yu K; Wang H; Liu J; Cheng YY; Kang Y; Wang H; Zhang J; Song K Tissue Cell; 2023 Feb; 80():101995. PubMed ID: 36512950 [TBL] [Abstract][Full Text] [Related]
9. Laser additive manufacturing of shape memory biopolymer bone scaffold: 3D conductive network construction and electrically driven mechanism. Shuai C; Wang Z; Yang F; Zhang H; Liu J; Feng P J Adv Res; 2024 Nov; 65():167-181. PubMed ID: 38030127 [TBL] [Abstract][Full Text] [Related]
10. Enhanced neurogenic differentiation on anisotropically conductive carbon nanotube reinforced polycaprolactone-collagen scaffold by applying direct coupling electrical stimulation. Ghosh S; Roy P; Lahiri D Int J Biol Macromol; 2022 Oct; 218():269-284. PubMed ID: 35843399 [TBL] [Abstract][Full Text] [Related]
11. Differential neural cell adhesion and neurite outgrowth on carbon nanotube and graphene reinforced polymeric scaffolds. Gupta P; Agrawal A; Murali K; Varshney R; Beniwal S; Manhas S; Roy P; Lahiri D Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():539-551. PubMed ID: 30678940 [TBL] [Abstract][Full Text] [Related]
12. The use of carbon nanotubes to reinforce 45S5 bioglass-based scaffolds for tissue engineering applications. Touri R; Moztarzadeh F; Sadeghian Z; Bizari D; Tahriri M; Mozafari M Biomed Res Int; 2013; 2013():465086. PubMed ID: 24294609 [TBL] [Abstract][Full Text] [Related]
13. A conducting neural interface of polyurethane/silk-functionalized multiwall carbon nanotubes with enhanced mechanical strength for neuroregeneration. Shrestha S; Shrestha BK; Lee J; Joong OK; Kim BS; Park CH; Kim CS Mater Sci Eng C Mater Biol Appl; 2019 Sep; 102():511-523. PubMed ID: 31147022 [TBL] [Abstract][Full Text] [Related]
14. 3D porous collagen/functionalized multiwalled carbon nanotube/chitosan/hydroxyapatite composite scaffolds for bone tissue engineering. Türk S; Altınsoy I; Çelebi Efe G; Ipek M; Özacar M; Bindal C Mater Sci Eng C Mater Biol Appl; 2018 Nov; 92():757-768. PubMed ID: 30184804 [TBL] [Abstract][Full Text] [Related]
15. CNT/Sericin Conductive Nerve Guidance Conduit Promotes Functional Recovery of Transected Peripheral Nerve Injury in a Rat Model. Li X; Yang W; Xie H; Wang J; Zhang L; Wang Z; Wang L ACS Appl Mater Interfaces; 2020 Aug; 12(33):36860-36872. PubMed ID: 32649170 [TBL] [Abstract][Full Text] [Related]
16. Moldable elastomeric polyester-carbon nanotube scaffolds for cardiac tissue engineering. Ahadian S; Davenport Huyer L; Estili M; Yee B; Smith N; Xu Z; Sun Y; Radisic M Acta Biomater; 2017 Apr; 52():81-91. PubMed ID: 27940161 [TBL] [Abstract][Full Text] [Related]
17. Multiwalled CNT-pHEMA composite conduit for peripheral nerve repair. Arslantunali D; Budak G; Hasirci V J Biomed Mater Res A; 2014 Mar; 102(3):828-41. PubMed ID: 23554154 [TBL] [Abstract][Full Text] [Related]
18. Preparation and characterization of chitosan-carbon nanotube scaffolds for bone tissue engineering. Venkatesan J; Ryu B; Sudha PN; Kim SK Int J Biol Macromol; 2012 Mar; 50(2):393-402. PubMed ID: 22234296 [TBL] [Abstract][Full Text] [Related]
19. Electrical stimulation of cell growth and neurogenesis using conductive and nonconductive microfibrous scaffolds. Grossemy S; Chan PPY; Doran PM Integr Biol (Camb); 2019 Jun; 11(6):264-279. PubMed ID: 31322680 [TBL] [Abstract][Full Text] [Related]