BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 32337627)

  • 1. Impacts of biofilms on the conversion of cellulose.
    Brethauer S; Shahab RL; Studer MH
    Appl Microbiol Biotechnol; 2020 Jun; 104(12):5201-5212. PubMed ID: 32337627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genomic and functional analyses of fungal and bacterial consortia that enable lignocellulose breakdown in goat gut microbiomes.
    Peng X; Wilken SE; Lankiewicz TS; Gilmore SP; Brown JL; Henske JK; Swift CL; Salamov A; Barry K; Grigoriev IV; Theodorou MK; Valentine DL; O'Malley MA
    Nat Microbiol; 2021 Apr; 6(4):499-511. PubMed ID: 33526884
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lignin deconstruction by anaerobic fungi.
    Lankiewicz TS; Choudhary H; Gao Y; Amer B; Lillington SP; Leggieri PA; Brown JL; Swift CL; Lipzen A; Na H; Amirebrahimi M; Theodorou MK; Baidoo EEK; Barry K; Grigoriev IV; Timokhin VI; Gladden J; Singh S; Mortimer JC; Ralph J; Simmons BA; Singer SW; O'Malley MA
    Nat Microbiol; 2023 Apr; 8(4):596-610. PubMed ID: 36894634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Form and function of Clostridium thermocellum biofilms.
    Dumitrache A; Wolfaardt G; Allen G; Liss SN; Lynd LR
    Appl Environ Microbiol; 2013 Jan; 79(1):231-9. PubMed ID: 23087042
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellulolytic enzyme production and enzymatic hydrolysis for second-generation bioethanol production.
    Wang M; Li Z; Fang X; Wang L; Qu Y
    Adv Biochem Eng Biotechnol; 2012; 128():1-24. PubMed ID: 22231654
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of cellulolytic microbial consortium enriched on Napier grass using metagenomic approaches.
    Kanokratana P; Wongwilaiwalin S; Mhuantong W; Tangphatsornruang S; Eurwilaichitr L; Champreda V
    J Biosci Bioeng; 2018 Apr; 125(4):439-447. PubMed ID: 29169786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of lignocellulose degradation in microorganisms.
    Gurovic MSV; Viceconte FR; Bidegain MA; Dietrich J
    J Appl Microbiol; 2023 Jan; 134(1):. PubMed ID: 36626734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzyme Discovery in Anaerobic Fungi (Neocallimastigomycetes) Enables Lignocellulosic Biorefinery Innovation.
    Lankiewicz TS; Lillington SP; O'Malley MA
    Microbiol Mol Biol Rev; 2022 Dec; 86(4):e0004122. PubMed ID: 35852448
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Concurrent microscopic observations and activity measurements of cellulose hydrolyzing and methanogenic populations during the batch anaerobic digestion of crystalline cellulose.
    Song H; Clarke WP; Blackall LL
    Biotechnol Bioeng; 2005 Aug; 91(3):369-78. PubMed ID: 15991234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anaerobic Fungi and Their Potential for Biogas Production.
    Dollhofer V; Podmirseg SM; Callaghan TM; Griffith GW; Fliegerová K
    Adv Biochem Eng Biotechnol; 2015; 151():41-61. PubMed ID: 26337843
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A cellulolytic fungal biofilm enhances the consolidated bioconversion of cellulose to short chain fatty acids by the rumen microbiome.
    Xiros C; Shahab RL; Studer MH
    Appl Microbiol Biotechnol; 2019 Apr; 103(8):3355-3365. PubMed ID: 30847541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of a generic microbial feedstock for lignocellulose biorefineries through sequential bioprocessing.
    Chang CW; Webb C
    Bioresour Technol; 2017 Mar; 227():35-43. PubMed ID: 28013134
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Multispecies Fungal Biofilm Approach to Enhance the Celluloyltic Efficiency of Membrane Reactors for Consolidated Bioprocessing of Plant Biomass.
    Xiros C; Studer MH
    Front Microbiol; 2017; 8():1930. PubMed ID: 29067006
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering cellulolytic ability into bioprocessing organisms.
    la Grange DC; den Haan R; van Zyl WH
    Appl Microbiol Biotechnol; 2010 Jul; 87(4):1195-208. PubMed ID: 20508932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simple yet effective: Microbial and biotechnological benefits of rumen liquid addition to lignocellulose-degrading biogas plants.
    Nagler M; Kozjek K; Etemadi M; Insam H; Podmirseg SM
    J Biotechnol; 2019 Jul; 300():1-10. PubMed ID: 31082412
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The microbial ecology of anaerobic cellulose degradation in municipal waste landfill sites: evidence of a role for fibrobacters.
    McDonald JE; Houghton JN; Rooks DJ; Allison HE; McCarthy AJ
    Environ Microbiol; 2012 Apr; 14(4):1077-87. PubMed ID: 22225785
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-omic Directed Discovery of Cellulosomes, Polysaccharide Utilization Loci, and Lignocellulases from an Enriched Rumen Anaerobic Consortium.
    Tomazetto G; Pimentel AC; Wibberg D; Dixon N; Squina FM
    Appl Environ Microbiol; 2020 Sep; 86(18):. PubMed ID: 32680862
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome.
    Davidi L; Moraïs S; Artzi L; Knop D; Hadar Y; Arfi Y; Bayer EA
    Proc Natl Acad Sci U S A; 2016 Sep; 113(39):10854-9. PubMed ID: 27621442
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Designing a cellulolytic enzyme cocktail for the efficient and economical conversion of lignocellulosic biomass to biofuels.
    Adsul M; Sandhu SK; Singhania RR; Gupta R; Puri SK; Mathur A
    Enzyme Microb Technol; 2020 Feb; 133():109442. PubMed ID: 31874688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A review of enzymes and microbes for lignocellulosic biorefinery and the possibility of their application to consolidated bioprocessing technology.
    Hasunuma T; Okazaki F; Okai N; Hara KY; Ishii J; Kondo A
    Bioresour Technol; 2013 May; 135():513-22. PubMed ID: 23195654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.