BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 32338221)

  • 1. Antimicrobial Peptides and their Multiple Effects at Sub-Inhibitory Concentrations.
    Casciaro B; Cappiello F; Verrusio W; Cacciafesta M; Mangoni ML
    Curr Top Med Chem; 2020; 20(14):1264-1273. PubMed ID: 32338221
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthetic antimicrobial peptides: Characteristics, design, and potential as alternative molecules to overcome microbial resistance.
    Lima PG; Oliveira JTA; Amaral JL; Freitas CDT; Souza PFN
    Life Sci; 2021 Aug; 278():119647. PubMed ID: 34043990
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rediscovery of antimicrobial peptides as therapeutic agents.
    Ryu M; Park J; Yeom JH; Joo M; Lee K
    J Microbiol; 2021 Feb; 59(2):113-123. PubMed ID: 33527313
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synergism between Host Defence Peptides and Antibiotics Against Bacterial Infections.
    Li J; Fernández-Millán P; Boix E
    Curr Top Med Chem; 2020; 20(14):1238-1263. PubMed ID: 32124698
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of Antimicrobial Peptides of the Innate Immune System in Combination With Conventional Antibiotics-A Novel Way to Combat Antibiotic Resistance?
    Zharkova MS; Orlov DS; Golubeva OY; Chakchir OB; Eliseev IE; Grinchuk TM; Shamova OV
    Front Cell Infect Microbiol; 2019; 9():128. PubMed ID: 31114762
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antimicrobial peptides as therapeutic agents: opportunities and challenges.
    Mahlapuu M; Björn C; Ekblom J
    Crit Rev Biotechnol; 2020 Nov; 40(7):978-992. PubMed ID: 32781848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antimicrobial peptides: mechanism of action, activity and clinical potential.
    Zhang QY; Yan ZB; Meng YM; Hong XY; Shao G; Ma JJ; Cheng XR; Liu J; Kang J; Fu CY
    Mil Med Res; 2021 Sep; 8(1):48. PubMed ID: 34496967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antimicrobial Peptides: the Achilles' Heel of Antibiotic Resistance?
    Lewies A; Du Plessis LH; Wentzel JF
    Probiotics Antimicrob Proteins; 2019 Jun; 11(2):370-381. PubMed ID: 30229514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The revitalization of antimicrobial peptides in the resistance era.
    Liu Y; Shi J; Tong Z; Jia Y; Yang B; Wang Z
    Pharmacol Res; 2021 Jan; 163():105276. PubMed ID: 33161137
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antimicrobial Peptides and Cell-Penetrating Peptides for Treating Intracellular Bacterial Infections.
    Buccini DF; Cardoso MH; Franco OL
    Front Cell Infect Microbiol; 2020; 10():612931. PubMed ID: 33614528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antimicrobial Peptides: a New Frontier in Antifungal Therapy.
    Buda De Cesare G; Cristy SA; Garsin DA; Lorenz MC
    mBio; 2020 Nov; 11(6):. PubMed ID: 33144376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactions of Designed Trp-Containing Antimicrobial Peptides with DNA of Multidrug-Resistant
    Han X; Kou Z; Jiang F; Sun X; Shang D
    DNA Cell Biol; 2021 Feb; 40(2):414-424. PubMed ID: 32023094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Esculentin-1a Derived Antipseudomonal Peptides: Limited Induction of Resistance and Synergy with Aztreonam.
    Casciaro B; Loffredo MR; Luca V; Verrusio W; Cacciafesta M; Mangoni ML
    Protein Pept Lett; 2018; 25(12):1155-1162. PubMed ID: 30381056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antimicrobial Peptides and Copper(II) Ions: Novel Therapeutic Opportunities.
    Portelinha J; Duay SS; Yu SI; Heilemann K; Libardo MDJ; Juliano SA; Klassen JL; Angeles-Boza AM
    Chem Rev; 2021 Feb; 121(4):2648-2712. PubMed ID: 33524257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antimicrobial peptides (AMPs): a patent review (2015-2020).
    Annunziato G; Costantino G
    Expert Opin Ther Pat; 2020 Dec; 30(12):931-947. PubMed ID: 33187458
    [No Abstract]   [Full Text] [Related]  

  • 16. Design, Engineering and Discovery of Novel α-Helical and β-Boomerang Antimicrobial Peptides against Drug Resistant Bacteria.
    Bhattacharjya S; Straus SK
    Int J Mol Sci; 2020 Aug; 21(16):. PubMed ID: 32796755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cysteine-rich antimicrobial peptides from plants: The future of antimicrobial therapy.
    Srivastava S; Dashora K; Ameta KL; Singh NP; El-Enshasy HA; Pagano MC; Hesham AE; Sharma GD; Sharma M; Bhargava A
    Phytother Res; 2021 Jan; 35(1):256-277. PubMed ID: 32940412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression and Roles of Antimicrobial Peptides in Innate Defense of Airway Mucosa: Potential Implication in Cystic Fibrosis.
    Geitani R; Moubareck CA; Xu Z; Karam Sarkis D; Touqui L
    Front Immunol; 2020; 11():1198. PubMed ID: 32695100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Topical antimicrobial peptide formulations for wound healing: Current developments and future prospects.
    Thapa RK; Diep DB; Tønnesen HH
    Acta Biomater; 2020 Feb; 103():52-67. PubMed ID: 31874224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rational design of antimicrobial peptides targeting Gram-negative bacteria.
    Huynh L; Velásquez J; Rabara R; Basu S; Nguyen HB; Gupta G
    Comput Biol Chem; 2021 Jun; 92():107475. PubMed ID: 33813188
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.