These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 32338260)

  • 1. Direct loading of blood for plasma separation and diagnostic assays on a digital microfluidic device.
    Dixon C; Lamanna J; Wheeler AR
    Lab Chip; 2020 May; 20(10):1845-1855. PubMed ID: 32338260
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An inkjet printed, roll-coated digital microfluidic device for inexpensive, miniaturized diagnostic assays.
    Dixon C; Ng AH; Fobel R; Miltenburg MB; Wheeler AR
    Lab Chip; 2016 Nov; 16(23):4560-4568. PubMed ID: 27801455
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A digital microfluidic device with integrated nanostructured microelectrodes for electrochemical immunoassays.
    Rackus DG; Dryden MD; Lamanna J; Zaragoza A; Lam B; Kelley SO; Wheeler AR
    Lab Chip; 2015; 15(18):3776-84. PubMed ID: 26247922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A review of digital microfluidics as portable platforms for lab-on a-chip applications.
    Samiei E; Tabrizian M; Hoorfar M
    Lab Chip; 2016 Jul; 16(13):2376-96. PubMed ID: 27272540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrogel particles-on-chip (HyPoC): a fluorescence micro-sensor array for IgG immunoassay.
    De Masi A; Scognamiglio PL; Battista E; Netti PA; Causa F
    Lab Chip; 2023 May; 23(10):2458-2468. PubMed ID: 37092599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Digital microfluidic platform for the detection of rubella infection and immunity: a proof of concept.
    Ng AH; Lee M; Choi K; Fischer AT; Robinson JM; Wheeler AR
    Clin Chem; 2015 Feb; 61(2):420-9. PubMed ID: 25512641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-powered integrated microfluidic point-of-care low-cost enabling (SIMPLE) chip.
    Yeh EC; Fu CC; Hu L; Thakur R; Feng J; Lee LP
    Sci Adv; 2017 Mar; 3(3):e1501645. PubMed ID: 28345028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Compact Control System to Enable Automated Operation of Microfluidic Bioanalytical Assays.
    Gonzalez-Suarez AM; Long A; Huang X; Revzin A
    Biosensors (Basel); 2022 Dec; 12(12):. PubMed ID: 36551127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reciprocating flow-assisted nucleic acid purification using a finger-actuated microfluidic device.
    Park J; Han DH; Hwang SH; Park JK
    Lab Chip; 2020 Sep; 20(18):3346-3353. PubMed ID: 32626862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidics for COVID-19: From Current Work to Future Perspective.
    Li Q; Zhou X; Wang Q; Liu W; Chen C
    Biosensors (Basel); 2023 Jan; 13(2):. PubMed ID: 36831930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated Microfluidic System with Active Mixing Enables Rapid Analysis of Biomarkers in 5 μL of Whole Blood.
    Gonzalez-Suarez AM; Stybayeva G; Carey WA; Revzin A
    Anal Chem; 2022 Jul; 94(27):9706-9714. PubMed ID: 35604796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nucleic acid sample preparation from whole blood in a paper microfluidic device using isotachophoresis.
    Sullivan BP; Bender AT; Ngyuen DN; Zhang JY; Posner JD
    J Chromatogr B Analyt Technol Biomed Life Sci; 2021 Jan; 1163():122494. PubMed ID: 33401049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A digital microfluidic approach to heterogeneous immunoassays.
    Miller EM; Ng AH; Uddayasankar U; Wheeler AR
    Anal Bioanal Chem; 2011 Jan; 399(1):337-45. PubMed ID: 21057776
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A microfluidic finger-actuated blood lysate preparation device enabled by rapid acoustofluidic mixing.
    Haque ME; Conde AJ; MacPherson WN; Knight SR; Carter RM; Kersaudy-Kerhoas M
    Lab Chip; 2022 Dec; 23(1):62-71. PubMed ID: 36477089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A microfluidic device for digital manipulation of gaseous samples.
    Enel A; Bourrelier A; Vial J; Thiébaut D; Bourlon B
    Lab Chip; 2020 Apr; 20(7):1290-1297. PubMed ID: 32159188
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integration of World-to-Chip Interfaces with Digital Microfluidics for Bacterial Transformation and Enzymatic Assays.
    Moazami E; Perry JM; Soffer G; Husser MC; Shih SCC
    Anal Chem; 2019 Apr; 91(8):5159-5168. PubMed ID: 30945840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extraction of Cell-Free Whole Blood Plasma Using a Dielectrophoresis-Based Microfluidic Device.
    Yang F; Zhang Y; Cui X; Fan Y; Xue Y; Miao H; Li G
    Biotechnol J; 2019 Mar; 14(3):e1800181. PubMed ID: 29952079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Digital Microfluidic Device Integrated with Electrochemical Impedance Spectroscopy for Cell-Based Immunoassay.
    Zhang Y; Liu Y
    Biosensors (Basel); 2022 May; 12(5):. PubMed ID: 35624631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nano-Interstice Driven Powerless Blood Plasma Extraction in a Membrane Filter Integrated Microfluidic Device.
    Kim J; Yoon J; Byun JY; Kim H; Han S; Kim J; Lee JH; Jo HS; Chung S
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33671983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A digital microfluidic method for multiplexed cell-based apoptosis assays.
    Bogojevic D; Chamberlain MD; Barbulovic-Nad I; Wheeler AR
    Lab Chip; 2012 Feb; 12(3):627-34. PubMed ID: 22159547
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.