These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
425 related articles for article (PubMed ID: 32338294)
1. CRISPRi/dCpf1-mediated dynamic metabolic switch to enhance butenoic acid production in Escherichia coli. Ji X; Zhao H; Zhu H; Zhu K; Tang SY; Lou C Appl Microbiol Biotechnol; 2020 Jun; 104(12):5385-5393. PubMed ID: 32338294 [TBL] [Abstract][Full Text] [Related]
2. Biosynthesis of butenoic acid through fatty acid biosynthesis pathway in Escherichia coli. Liu X; Yu H; Jiang X; Ai G; Yu B; Zhu K Appl Microbiol Biotechnol; 2015 Feb; 99(4):1795-804. PubMed ID: 25472435 [TBL] [Abstract][Full Text] [Related]
3. CRISPR interference-guided multiplex repression of endogenous competing pathway genes for redirecting metabolic flux in Escherichia coli. Kim SK; Seong W; Han GH; Lee DH; Lee SG Microb Cell Fact; 2017 Nov; 16(1):188. PubMed ID: 29100516 [TBL] [Abstract][Full Text] [Related]
4. Engineering Escherichia coli for the synthesis of short- and medium-chain α,β-unsaturated carboxylic acids. Kim S; Cheong S; Gonzalez R Metab Eng; 2016 Jul; 36():90-98. PubMed ID: 26996381 [TBL] [Abstract][Full Text] [Related]
5. Engineering an Optogenetic CRISPRi Platform for Improved Chemical Production. Wu P; Chen Y; Liu M; Xiao G; Yuan J ACS Synth Biol; 2021 Jan; 10(1):125-131. PubMed ID: 33356154 [TBL] [Abstract][Full Text] [Related]
6. Genome-scale target identification in Escherichia coli for high-titer production of free fatty acids. Fang L; Fan J; Luo S; Chen Y; Wang C; Cao Y; Song H Nat Commun; 2021 Aug; 12(1):4976. PubMed ID: 34404790 [TBL] [Abstract][Full Text] [Related]
7. Redirecting Metabolic Flux via Combinatorial Multiplex CRISPRi-Mediated Repression for Isopentenol Production in Escherichia coli. Tian T; Kang JW; Kang A; Lee TS ACS Synth Biol; 2019 Feb; 8(2):391-402. PubMed ID: 30681833 [TBL] [Abstract][Full Text] [Related]
8. Integrated strain engineering and bioprocessing strategies for high-level bio-based production of 3-hydroxyvalerate in Escherichia coli. Miscevic D; Mao JY; Kefale T; Abedi D; Huang CC; Moo-Young M; Chou CP Appl Microbiol Biotechnol; 2020 Jun; 104(12):5259-5272. PubMed ID: 32291486 [TBL] [Abstract][Full Text] [Related]
9. CRISPR interference-guided balancing of a biosynthetic mevalonate pathway increases terpenoid production. Kim SK; Han GH; Seong W; Kim H; Kim SW; Lee DH; Lee SG Metab Eng; 2016 Nov; 38():228-240. PubMed ID: 27569599 [TBL] [Abstract][Full Text] [Related]
10. Genome-Wide CRISPRi-Based Identification of Targets for Decoupling Growth from Production. Li S; Jendresen CB; Landberg J; Pedersen LE; Sonnenschein N; Jensen SI; Nielsen AT ACS Synth Biol; 2020 May; 9(5):1030-1040. PubMed ID: 32268068 [TBL] [Abstract][Full Text] [Related]
11. Combining CRISPR and CRISPRi Systems for Metabolic Engineering of E. coli and 1,4-BDO Biosynthesis. Wu MY; Sung LY; Li H; Huang CH; Hu YC ACS Synth Biol; 2017 Dec; 6(12):2350-2361. PubMed ID: 28854333 [TBL] [Abstract][Full Text] [Related]
12. Development of a Type I-E CRISPR-Based Programmable Repression System for Fine-Tuning Metabolic Flux toward D-Pantothenic Acid in Mao C; Zheng H; Chen Y; Yuan P; Sun D ACS Synth Biol; 2024 Aug; 13(8):2480-2491. PubMed ID: 39083228 [TBL] [Abstract][Full Text] [Related]
13. Escherichia coli enoyl-acyl carrier protein reductase (FabI) supports efficient operation of a functional reversal of β-oxidation cycle. Vick JE; Clomburg JM; Blankschien MD; Chou A; Kim S; Gonzalez R Appl Environ Microbiol; 2015 Feb; 81(4):1406-16. PubMed ID: 25527535 [TBL] [Abstract][Full Text] [Related]
14. Correlations between FAS elongation cycle genes expression and fatty acid production for improvement of long-chain fatty acids in Escherichia coli. Lee S; Jung Y; Lee S; Lee J Appl Biochem Biotechnol; 2013 Mar; 169(5):1606-19. PubMed ID: 23322253 [TBL] [Abstract][Full Text] [Related]
15. Metabolic manipulation through CRISPRi and gene deletion to enhance cadaverine production in Escherichia coli. Ting WW; Ng IS J Biosci Bioeng; 2020 Dec; 130(6):553-562. PubMed ID: 32792329 [TBL] [Abstract][Full Text] [Related]
17. CRISPRi-Based Dynamic Control of Carbon Flow for Efficient Zhang Q; Hou Z; Ma Q; Mo X; Sun Q; Tan M; Xia L; Lin G; Yang M; Zhang Y; Xu Q; Li Y; Chen N; Xie X J Agric Food Chem; 2020 Mar; 68(10):3203-3213. PubMed ID: 32101421 [TBL] [Abstract][Full Text] [Related]
18. Application of CRISPRi for prokaryotic metabolic engineering involving multiple genes, a case study: Controllable P(3HB-co-4HB) biosynthesis. Lv L; Ren YL; Chen JC; Wu Q; Chen GQ Metab Eng; 2015 May; 29():160-168. PubMed ID: 25838211 [TBL] [Abstract][Full Text] [Related]
19. CRISPR interference-guided modulation of glucose pathways to boost aconitic acid production in Escherichia coli. Li Q; Zhao P; Yin H; Liu Z; Zhao H; Tian P Microb Cell Fact; 2020 Sep; 19(1):174. PubMed ID: 32883305 [TBL] [Abstract][Full Text] [Related]
20. Expanding metabolic pathway for de novo biosynthesis of the chiral pharmaceutical intermediate L-pipecolic acid in Escherichia coli. Ying H; Tao S; Wang J; Ma W; Chen K; Wang X; Ouyang P Microb Cell Fact; 2017 Mar; 16(1):52. PubMed ID: 28347340 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]