BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

408 related articles for article (PubMed ID: 32338294)

  • 1. CRISPRi/dCpf1-mediated dynamic metabolic switch to enhance butenoic acid production in Escherichia coli.
    Ji X; Zhao H; Zhu H; Zhu K; Tang SY; Lou C
    Appl Microbiol Biotechnol; 2020 Jun; 104(12):5385-5393. PubMed ID: 32338294
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biosynthesis of butenoic acid through fatty acid biosynthesis pathway in Escherichia coli.
    Liu X; Yu H; Jiang X; Ai G; Yu B; Zhu K
    Appl Microbiol Biotechnol; 2015 Feb; 99(4):1795-804. PubMed ID: 25472435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR interference-guided multiplex repression of endogenous competing pathway genes for redirecting metabolic flux in Escherichia coli.
    Kim SK; Seong W; Han GH; Lee DH; Lee SG
    Microb Cell Fact; 2017 Nov; 16(1):188. PubMed ID: 29100516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering Escherichia coli for the synthesis of short- and medium-chain α,β-unsaturated carboxylic acids.
    Kim S; Cheong S; Gonzalez R
    Metab Eng; 2016 Jul; 36():90-98. PubMed ID: 26996381
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering an Optogenetic CRISPRi Platform for Improved Chemical Production.
    Wu P; Chen Y; Liu M; Xiao G; Yuan J
    ACS Synth Biol; 2021 Jan; 10(1):125-131. PubMed ID: 33356154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-scale target identification in Escherichia coli for high-titer production of free fatty acids.
    Fang L; Fan J; Luo S; Chen Y; Wang C; Cao Y; Song H
    Nat Commun; 2021 Aug; 12(1):4976. PubMed ID: 34404790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redirecting Metabolic Flux via Combinatorial Multiplex CRISPRi-Mediated Repression for Isopentenol Production in Escherichia coli.
    Tian T; Kang JW; Kang A; Lee TS
    ACS Synth Biol; 2019 Feb; 8(2):391-402. PubMed ID: 30681833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrated strain engineering and bioprocessing strategies for high-level bio-based production of 3-hydroxyvalerate in Escherichia coli.
    Miscevic D; Mao JY; Kefale T; Abedi D; Huang CC; Moo-Young M; Chou CP
    Appl Microbiol Biotechnol; 2020 Jun; 104(12):5259-5272. PubMed ID: 32291486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR interference-guided balancing of a biosynthetic mevalonate pathway increases terpenoid production.
    Kim SK; Han GH; Seong W; Kim H; Kim SW; Lee DH; Lee SG
    Metab Eng; 2016 Nov; 38():228-240. PubMed ID: 27569599
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-Wide CRISPRi-Based Identification of Targets for Decoupling Growth from Production.
    Li S; Jendresen CB; Landberg J; Pedersen LE; Sonnenschein N; Jensen SI; Nielsen AT
    ACS Synth Biol; 2020 May; 9(5):1030-1040. PubMed ID: 32268068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combining CRISPR and CRISPRi Systems for Metabolic Engineering of E. coli and 1,4-BDO Biosynthesis.
    Wu MY; Sung LY; Li H; Huang CH; Hu YC
    ACS Synth Biol; 2017 Dec; 6(12):2350-2361. PubMed ID: 28854333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Escherichia coli enoyl-acyl carrier protein reductase (FabI) supports efficient operation of a functional reversal of β-oxidation cycle.
    Vick JE; Clomburg JM; Blankschien MD; Chou A; Kim S; Gonzalez R
    Appl Environ Microbiol; 2015 Feb; 81(4):1406-16. PubMed ID: 25527535
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlations between FAS elongation cycle genes expression and fatty acid production for improvement of long-chain fatty acids in Escherichia coli.
    Lee S; Jung Y; Lee S; Lee J
    Appl Biochem Biotechnol; 2013 Mar; 169(5):1606-19. PubMed ID: 23322253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic manipulation through CRISPRi and gene deletion to enhance cadaverine production in Escherichia coli.
    Ting WW; Ng IS
    J Biosci Bioeng; 2020 Dec; 130(6):553-562. PubMed ID: 32792329
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rewiring Metabolic Flux in
    Yin L; Xi D; Shen Y; Ding N; Shao Q; Qian Y; Fang Y
    J Agric Food Chem; 2024 Feb; 72(6):3077-3087. PubMed ID: 38303604
    [No Abstract]   [Full Text] [Related]  

  • 16. CRISPRi-Based Dynamic Control of Carbon Flow for Efficient
    Zhang Q; Hou Z; Ma Q; Mo X; Sun Q; Tan M; Xia L; Lin G; Yang M; Zhang Y; Xu Q; Li Y; Chen N; Xie X
    J Agric Food Chem; 2020 Mar; 68(10):3203-3213. PubMed ID: 32101421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of CRISPRi for prokaryotic metabolic engineering involving multiple genes, a case study: Controllable P(3HB-co-4HB) biosynthesis.
    Lv L; Ren YL; Chen JC; Wu Q; Chen GQ
    Metab Eng; 2015 May; 29():160-168. PubMed ID: 25838211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR interference-guided modulation of glucose pathways to boost aconitic acid production in Escherichia coli.
    Li Q; Zhao P; Yin H; Liu Z; Zhao H; Tian P
    Microb Cell Fact; 2020 Sep; 19(1):174. PubMed ID: 32883305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expanding metabolic pathway for de novo biosynthesis of the chiral pharmaceutical intermediate L-pipecolic acid in Escherichia coli.
    Ying H; Tao S; Wang J; Ma W; Chen K; Wang X; Ouyang P
    Microb Cell Fact; 2017 Mar; 16(1):52. PubMed ID: 28347340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Systems metabolic engineering of Bacillus subtilis for efficient biosynthesis of 5-methyltetrahydrofolate.
    Yang H; Liu Y; Li J; Liu L; Du G; Chen J
    Biotechnol Bioeng; 2020 Jul; 117(7):2116-2130. PubMed ID: 32170863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.