These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 32338427)

  • 1. Nitrogen flux into metabolites and microcystins changes in response to different nitrogen sources in Microcystis aeruginosa NIES-843.
    Krausfeldt LE; Farmer AT; Castro HF; Boyer GL; Campagna SR; Wilhelm SW
    Environ Microbiol; 2020 Jun; 22(6):2419-2431. PubMed ID: 32338427
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiological effects of nitrate, ammonium, and urea on the growth and microcystins contamination of Microcystis aeruginosa: Implication for nitrogen mitigation.
    Chen Q; Wang M; Zhang J; Shi W; Mynett AE; Yan H; Hu L
    Water Res; 2019 Oct; 163():114890. PubMed ID: 31351354
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of changes in Microcystis aeruginosa growth and microcystin production by urea via transcriptomic surveys.
    Zhou Y; Zhang X; Li X; Jia P; Dai R
    Sci Total Environ; 2019 Mar; 655():181-187. PubMed ID: 30469064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Seasonally Relevant Cool Temperatures Interact with N Chemistry to Increase Microcystins Produced in Lab Cultures of Microcystis aeruginosa NIES-843.
    Peng G; Martin RM; Dearth SP; Sun X; Boyer GL; Campagna SR; Lin S; Wilhelm SW
    Environ Sci Technol; 2018 Apr; 52(7):4127-4136. PubMed ID: 29522323
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of urea on growth and microcystins production of Microcystis aeruginosa.
    Wu X; Yan Y; Wang P; Ni L; Gao J; Dai R
    Bioresour Technol; 2015 Apr; 181():72-7. PubMed ID: 25638406
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential effects of nitrate and ammonium on the growth of algae and microcystin production by nitrogen-fixing Nostoc sp. and non-nitrogen-fixing Microcystis aeruginosa.
    Yang N; Li Z; Wu Z; Liu X; Zhang Y; Sun T; Wang X; Zhao Y; Tong Y
    Water Sci Technol; 2023 Jul; 88(1):136-150. PubMed ID: 37452539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptomic analysis dissects the regulatory strategy of toxic cyanobacterium Microcystis aeruginosa under differential nitrogen forms.
    Yang X; Bi Y; Ma X; Dong W; Wang X; Wang S
    J Hazard Mater; 2022 Apr; 428():128276. PubMed ID: 35051775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative effects of inorganic and organic nitrogen on the growth and microcystin production of Microcystis aeruginosa.
    Yan Y; Dai R; Liu Y; Gao J; Wu X
    World J Microbiol Biotechnol; 2015 May; 31(5):763-72. PubMed ID: 25726035
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elevated pCO2 causes a shift towards more toxic microcystin variants in nitrogen-limited Microcystis aeruginosa.
    Liu J; Van Oosterhout E; Faassen EJ; Lürling M; Helmsing NR; Van de Waal DB
    FEMS Microbiol Ecol; 2016 Feb; 92(2):. PubMed ID: 26676057
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study on the cyanobacterial toxin metabolism of Microcystis aeruginosa in nitrogen-starved conditions by a stable isotope labelling method.
    Qian ZY; Chen X; Zhu HT; Shi JZ; Gong TT; Xian QM
    J Hazard Mater; 2019 Jul; 373():558-564. PubMed ID: 30952000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of nitrogen forms on the production of cyanobacterial toxin microcystin-IR by an isolated Microcystis aeruginosa.
    Yan H; Pan G; Zou H; Song L; Zhang M
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2004; 39(11-12):2993-3003. PubMed ID: 15533019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbiome processing of organic nitrogen input supports growth and cyanotoxin production of Microcystis aeruginosa cultures.
    Li W; Baliu-Rodriguez D; Premathilaka SH; Thenuwara SI; Kimbrel JA; Samo TJ; Ramon C; Kiledal EA; Rivera SR; Kharbush J; Isailovic D; Weber PK; Dick GJ; Mayali X
    ISME J; 2024 Jan; 18(1):. PubMed ID: 38718148
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitrogen Forms Regulate the Response of
    Liu MY; Liu XY; Guo YY; Ma JY; Duan JL; Zhang M; Han Y; Sun XD; Sun YC; Wang Y; Yuan XZ; Feng LJ
    ACS Nano; 2024 May; 18(18):11828-11836. PubMed ID: 38659192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of lanthanum on Microcystis aeruginosa: Attention to the changes in composition and content of cellular microcystins.
    Shen F; Wang L; Zhou Q; Huang X
    Aquat Toxicol; 2018 Mar; 196():9-16. PubMed ID: 29324395
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Daily transcriptome changes reveal the role of nitrogen in controlling microcystin synthesis and nutrient transport in the toxic cyanobacterium, Microcystis aeruginosa.
    Harke MJ; Gobler CJ
    BMC Genomics; 2015 Dec; 16():1068. PubMed ID: 26673568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitrogen availability increases the toxin quota of a harmful cyanobacterium, Microcystis aeruginosa.
    Horst GP; Sarnelle O; White JD; Hamilton SK; Kaul RB; Bressie JD
    Water Res; 2014 May; 54():188-98. PubMed ID: 24568788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of arginine on the growth and microcystin-LR production of Microcystis aeruginosa in culture.
    Dai R; Zhou Y; Chen Y; Zhang X; Yan Y; An D
    Sci Total Environ; 2019 Feb; 651(Pt 1):706-712. PubMed ID: 30245426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biological Stoichiometry Regulates Toxin Production in
    Wagner ND; Osburn FS; Wang J; Taylor RB; Boedecker AR; Chambliss CK; Brooks BW; Scott JT
    Toxins (Basel); 2019 Oct; 11(10):. PubMed ID: 31623095
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of nonylphenol on the growth and microcystin production of Microcystis strains.
    Wang J; Xie P; Guo N
    Environ Res; 2007 Jan; 103(1):70-8. PubMed ID: 16831412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitrogen form, concentration, and micronutrient availability affect microcystin production in cyanobacterial blooms.
    Wagner ND; Quach E; Buscho S; Ricciardelli A; Kannan A; Naung SW; Phillip G; Sheppard B; Ferguson L; Allen A; Sharon C; Duke JR; Taylor RB; Austin BJ; Stovall JK; Haggard BE; Chambliss CK; Brooks BW; Scott JT
    Harmful Algae; 2021 Mar; 103():102002. PubMed ID: 33980442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.