These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 32338464)

  • 1. 3D Printing of Bioinspired Biomaterials for Tissue Regeneration.
    Li T; Chang J; Zhu Y; Wu C
    Adv Healthc Mater; 2020 Dec; 9(23):e2000208. PubMed ID: 32338464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D-printed bioceramic scaffolds: From bone tissue engineering to tumor therapy.
    Ma H; Feng C; Chang J; Wu C
    Acta Biomater; 2018 Oct; 79():37-59. PubMed ID: 30165201
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D printing of biomaterials for vascularized and innervated tissue regeneration.
    Zhang H; Wu C
    Int J Bioprint; 2023; 9(3):706. PubMed ID: 37273994
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetic Field-Assisted Stereolithography for Productions of Multimaterial Hierarchical Surface Structures.
    Joyee EB; Szmelter A; Eddington D; Pan Y
    ACS Appl Mater Interfaces; 2020 Sep; 12(37):42357-42368. PubMed ID: 32815365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent Progress in Biomimetic Additive Manufacturing Technology: From Materials to Functional Structures.
    Yang Y; Song X; Li X; Chen Z; Zhou C; Zhou Q; Chen Y
    Adv Mater; 2018 Jun; ():e1706539. PubMed ID: 29920790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional printing of smart constructs using stimuli-responsive biomaterials: A future direction of precision medicine.
    Gao Q; Lee JS; Kim BS; Gao G
    Int J Bioprint; 2023; 9(1):638. PubMed ID: 36636137
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent Advances in Biomaterials for 3D Printing and Tissue Engineering.
    Jammalamadaka U; Tappa K
    J Funct Biomater; 2018 Mar; 9(1):. PubMed ID: 29494503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multimaterial bioprinting and combination of processing techniques towards the fabrication of biomimetic tissues and organs.
    Tavafoghi M; Darabi MA; Mahmoodi M; Tutar R; Xu C; Mirjafari A; Billi F; Swieszkowski W; Nasrollahi F; Ahadian S; Hosseini V; Khademhosseini A; Ashammakhi N
    Biofabrication; 2021 Aug; 13(4):. PubMed ID: 34130266
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solvent-based Extrusion 3D Printing for the Fabrication of Tissue Engineering Scaffolds.
    Zhang B; Cristescu R; Chrisey DB; Narayan RJ
    Int J Bioprint; 2020; 6(1):211. PubMed ID: 32596549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lightweight Structural Biomaterials with Excellent Mechanical Performance: A Review.
    Zhang Z; Mu Z; Wang Y; Song W; Yu H; Zhang S; Li Y; Niu S; Han Z; Ren L
    Biomimetics (Basel); 2023 Apr; 8(2):. PubMed ID: 37092405
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional (3D) printed scaffold and material selection for bone repair.
    Zhang L; Yang G; Johnson BN; Jia X
    Acta Biomater; 2019 Jan; 84():16-33. PubMed ID: 30481607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Current status of three-dimensional printing inks for soft tissue regeneration.
    Kim JE; Kim SH; Jung Y
    Tissue Eng Regen Med; 2016 Dec; 13(6):636-646. PubMed ID: 30603445
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-Dimensional Printing Strategies for Enhanced Hydrogel Applications.
    Omidian H; Mfoafo K
    Gels; 2024 Mar; 10(4):. PubMed ID: 38667639
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomaterials in bone and mineralized tissue engineering using 3D printing and bioprinting technologies.
    Rahimnejad M; Rezvaninejad R; Rezvaninejad R; França R
    Biomed Phys Eng Express; 2021 Oct; 7(6):. PubMed ID: 34438382
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Addressing Unmet Clinical Needs with 3D Printing Technologies.
    Ghosh U; Ning S; Wang Y; Kong YL
    Adv Healthc Mater; 2018 Sep; 7(17):e1800417. PubMed ID: 30004185
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent advances in the development of nature-derived photocrosslinkable biomaterials for 3D printing in tissue engineering.
    Choi G; Cha HJ
    Biomater Res; 2019; 23():18. PubMed ID: 31827880
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D printed osteochondral scaffolds: design strategies, present applications and future perspectives.
    Liu G; Wei X; Zhai Y; Zhang J; Li J; Zhao Z; Guan T; Zhao D
    Front Bioeng Biotechnol; 2024; 12():1339916. PubMed ID: 38425994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration.
    Wang M; Favi P; Cheng X; Golshan NH; Ziemer KS; Keidar M; Webster TJ
    Acta Biomater; 2016 Dec; 46():256-265. PubMed ID: 27667017
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D printed polymer-mineral composite biomaterials for bone tissue engineering: Fabrication and characterization.
    Babilotte J; Guduric V; Le Nihouannen D; Naveau A; Fricain JC; Catros S
    J Biomed Mater Res B Appl Biomater; 2019 Nov; 107(8):2579-2595. PubMed ID: 30848068
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioinspired energy absorbing material designs using additive manufacturing.
    Ingrole A; Aguirre TG; Fuller L; Donahue SW
    J Mech Behav Biomed Mater; 2021 Jul; 119():104518. PubMed ID: 33882409
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.