BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 32338660)

  • 1. Guanine anchoring: a strategy for specific targeting of a G-quadruplex using short PNA, LNA and DNA molecules.
    Tan DJY; Das P; Winnerdy FR; Lim KW; Phan AT
    Chem Commun (Camb); 2020 Jun; 56(44):5897-5900. PubMed ID: 32338660
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quadruplex formation by a guanine-rich PNA oligomer.
    Datta B; Bier ME; Roy S; Armitage BA
    J Am Chem Soc; 2005 Mar; 127(12):4199-207. PubMed ID: 15783201
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting nucleic acids with a G-triplex-to-G-quadruplex transformation and stabilization using a peptide-PNA G-tract conjugate.
    Wen CJ; Gong JY; Zheng KW; He YD; Zhang JY; Hao YH; Tan Z
    Chem Commun (Camb); 2020 Jun; 56(48):6567-6570. PubMed ID: 32396929
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multivalent LKγ-PNA oligomers bind to a human telomere DNA G-rich sequence to form quadruplexes.
    Gupta P; Rastede EE; Appella DH
    Bioorg Med Chem Lett; 2015 Nov; 25(21):4757-4760. PubMed ID: 26259805
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hybridization of G-quadruplex-forming peptide nucleic acids to guanine-rich DNA templates inhibits DNA polymerase η extension.
    Murphy CT; Gupta A; Armitage BA; Opresko PL
    Biochemistry; 2014 Aug; 53(32):5315-22. PubMed ID: 25068499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quadruplex formation is necessary for stable PNA invasion into duplex DNA of BCL2 promoter region.
    Onyshchenko MI; Gaynutdinov TI; Englund EA; Appella DH; Neumann RD; Panyutin IG
    Nucleic Acids Res; 2011 Sep; 39(16):7114-23. PubMed ID: 21593130
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeting DNA G-quadruplex structures with peptide nucleic acids.
    Panyutin IG; Onyshchenko MI; Englund EA; Appella DH; Neumann RD
    Curr Pharm Des; 2012; 18(14):1984-91. PubMed ID: 22376112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic discrimination in recognition of DNA quadruplex targets by guanine-rich heteroquadruplex-forming PNA probes.
    Roy S; Zanotti KJ; Murphy CT; Tanious FA; Wilson WD; Ly DH; Armitage BA
    Chem Commun (Camb); 2011 Aug; 47(30):8524-6. PubMed ID: 21717030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hybridization of complementary and homologous peptide nucleic acid oligomers to a guanine quadruplex-forming RNA.
    Marin VL; Armitage BA
    Biochemistry; 2006 Feb; 45(6):1745-54. PubMed ID: 16460021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of a PNA2-DNA2 hybrid quadruplex.
    Datta B; Schmitt C; Armitage BA
    J Am Chem Soc; 2003 Apr; 125(14):4111-8. PubMed ID: 12670232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and label free characterization of a bimolecular PNA homo quadruplex.
    Pinto B; Rusciano G; D'Errico S; Borbone N; Sasso A; Piccialli V; Mayol L; Oliviero G; Piccialli G
    Biochim Biophys Acta Gen Subj; 2017 May; 1861(5 Pt B):1222-1228. PubMed ID: 27913190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Homologous PNA Hybridization to Noncanonical DNA G-Quadruplexes.
    Kormuth KA; Woolford JL; Armitage BA
    Biochemistry; 2016 Mar; 55(12):1749-57. PubMed ID: 26950608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNA guanine quadruplex invasion by complementary and homologous PNA probes.
    Marin VL; Armitage BA
    J Am Chem Soc; 2005 Jun; 127(22):8032-3. PubMed ID: 15926825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PPG peptide nucleic acids that promote DNA guanine quadruplexes.
    Englund EA; Gupta P; Micklitsch CM; Onyshchenko MI; Remeeva E; Neumann RD; Panyutin IG; Appella DH
    Chembiochem; 2014 Sep; 15(13):1887-90. PubMed ID: 25044379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. G-quadruplex formation between G-rich PNA and homologous sequences in oligonucleotides and supercoiled plasmid DNA.
    Gaynutdinov TI; Englund EA; Appella DH; Onyshchenko MI; Neumann RD; Panyutin IG
    Nucleic Acid Ther; 2015 Apr; 25(2):78-84. PubMed ID: 25650982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Loop and backbone modifications of peptide nucleic acid improve g-quadruplex binding selectivity.
    Lusvarghi S; Murphy CT; Roy S; Tanious FA; Sacui I; Wilson WD; Ly DH; Armitage BA
    J Am Chem Soc; 2009 Dec; 131(51):18415-24. PubMed ID: 19947597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective targeting of mutually exclusive DNA G-quadruplexes: HIV-1 LTR as paradigmatic model.
    Tassinari M; Zuffo M; Nadai M; Pirota V; Sevilla Montalvo AC; Doria F; Freccero M; Richter SN
    Nucleic Acids Res; 2020 May; 48(9):4627-4642. PubMed ID: 32282912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Programing the formation of DNA and PNA quadruplexes by pi-pi-stacking interactions.
    Saha S; Cai J; Eiler D; Hamilton AD
    Chem Commun (Camb); 2010 Mar; 46(10):1685-7. PubMed ID: 20177616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-affinity homologous peptide nucleic acid probes for targeting a quadruplex-forming sequence from a MYC promoter element.
    Roy S; Tanious FA; Wilson WD; Ly DH; Armitage BA
    Biochemistry; 2007 Sep; 46(37):10433-43. PubMed ID: 17718513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intramolecular and intermolecular guanine quadruplexes of DNA in aqueous salt and ethanol solutions.
    Vorlícková M; Bednárová K; Kejnovská I; Kypr J
    Biopolymers; 2007 May; 86(1):1-10. PubMed ID: 17211886
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.