These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 3233879)

  • 1. The stable products of the non-enzymatic glycation of pig crystallins: new findings related to the pathogenesis of diabetic cataracts.
    Vidal P; Cabezas-Cerrato J
    Diabetes Res; 1988 Aug; 8(4):183-7. PubMed ID: 3233879
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 2-D electrophoresis distribution of stable 14C-glycation products from pig lens crystallins in relation to diabetic cataract formation.
    Vidal P; Cabezas-Cerrato J
    Diabetes Res Clin Pract; 1989 Apr; 6(3):233-6. PubMed ID: 2721373
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accumulation of glycation products in alpha-H pig lens crystallin and its bearing to diabetic cataract genesis.
    Vidal P; Cabezas-Cerrato J
    Acta Ophthalmol (Copenh); 1988 Oct; 66(5):589-92. PubMed ID: 3218484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acetyl- L -carnitine decreases glycation of lens proteins: in vitro studies.
    Swamy-Mruthinti S; Carter AL
    Exp Eye Res; 1999 Jul; 69(1):109-15. PubMed ID: 10375455
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immunochemical detection of glycated beta- and gamma-crystallins in lens and their circulating autoantibodies (IgG) in streptozocin induced diabetic rat.
    Ranjan M; Nayak S; Rao BS
    Mol Vis; 2006 Sep; 12():1077-85. PubMed ID: 17093392
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonenzymatic glycosylation (glycation) of lens crystallins in diabetes and aging.
    Abraham EC; Swamy MS; Perry RE
    Prog Clin Biol Res; 1989; 304():123-39. PubMed ID: 2780679
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of hyperbaric oxygen on the crystallins of cultured rabbit lenses: a possible catalytic role for copper.
    Padgaonkar VA; Leverenz VR; Fowler KE; Reddy VN; Giblin FJ
    Exp Eye Res; 2000 Oct; 71(4):371-83. PubMed ID: 10995558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcium activated proteolysis and protein modification in the U18666A cataract.
    Chandrasekher G; Cenedella RJ
    Exp Eye Res; 1993 Dec; 57(6):737-45. PubMed ID: 8150025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The contribution of glycation to cataract formation in diabetes.
    Stevens A
    J Am Optom Assoc; 1998 Aug; 69(8):519-30. PubMed ID: 9747048
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lens protein composition, glycation and high molecular weight aggregation in aging rats.
    Swamy MS; Abraham EC
    Invest Ophthalmol Vis Sci; 1987 Oct; 28(10):1693-701. PubMed ID: 3654142
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transition metal-catalyzed oxidation of ascorbate in human cataract extracts: possible role of advanced glycation end products.
    Saxena P; Saxena AK; Cui XL; Obrenovich M; Gudipaty K; Monnier VM
    Invest Ophthalmol Vis Sci; 2000 May; 41(6):1473-81. PubMed ID: 10798665
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of lens crystallin glycation and high molecular weight aggregate formation by aspirin in vitro and in vivo.
    Swamy MS; Abraham EC
    Invest Ophthalmol Vis Sci; 1989 Jun; 30(6):1120-6. PubMed ID: 2525117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hierarchy of lens proteins requiring protection against heat-induced precipitation by the alpha crystallin chaperone.
    Velasco PT; Lukas TJ; Murthy SN; Duglas-Tabor Y; Garland DL; Lorand L
    Exp Eye Res; 1997 Oct; 65(4):497-505. PubMed ID: 9464183
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Delay of diabetic cataract in rats by the antiglycating potential of cumin through modulation of alpha-crystallin chaperone activity.
    Kumar PA; Reddy PY; Srinivas PN; Reddy GB
    J Nutr Biochem; 2009 Jul; 20(7):553-62. PubMed ID: 18789666
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-crystallin complexes exist in the water-soluble high molecular weight protein fractions of aging normal and cataractous human lenses.
    Srivastava K; Chaves JM; Srivastava OP; Kirk M
    Exp Eye Res; 2008 Oct; 87(4):356-66. PubMed ID: 18662688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of possible sites for posttranslational modifications in human gamma crystallins: effect of glycation on the structure of human gamma-B-crystallin as analyzed by molecular modeling.
    Salim A; Bano A; Zaidi ZH
    Proteins; 2003 Nov; 53(2):162-73. PubMed ID: 14517968
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential glycation of rat alpha-, beta- and gamma-crystallins.
    Swamy MS; Abraham EC
    Exp Eye Res; 1991 Apr; 52(4):439-44. PubMed ID: 2037022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diabetes affects alpha-crystallin chaperone function.
    Cherian M; Abraham EC
    Biochem Biophys Res Commun; 1995 Jul; 212(1):184-9. PubMed ID: 7612005
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decreased chaperone activity of alpha-crystallin in selenite cataract may result from selenite-induced aggregation.
    Yan H; Harding JJ; Hui YN; Li MY
    Eye (Lond); 2003 Jul; 17(5):637-45. PubMed ID: 12855974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decrease in glycation of lens proteins by lysine and glycine by scavenging of glucose and possible mitigation of cataractogenesis.
    Ramakrishnan S; Sulochana KN
    Exp Eye Res; 1993 Nov; 57(5):623-8. PubMed ID: 8282049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.