These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 32338892)

  • 21. Learning protein-ligand binding affinity with atomic environment vectors.
    Meli R; Anighoro A; Bodkin MJ; Morris GM; Biggin PC
    J Cheminform; 2021 Aug; 13(1):59. PubMed ID: 34391475
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Calculate protein-ligand binding affinities with the extended linear interaction energy method: application on the Cathepsin S set in the D3R Grand Challenge 3.
    He X; Man VH; Ji B; Xie XQ; Wang J
    J Comput Aided Mol Des; 2019 Jan; 33(1):105-117. PubMed ID: 30218199
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of a graph convolutional neural network model for efficient prediction of protein-ligand binding affinities.
    Son J; Kim D
    PLoS One; 2021; 16(4):e0249404. PubMed ID: 33831016
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Convolutional neural network scoring and minimization in the D3R 2017 community challenge.
    Sunseri J; King JE; Francoeur PG; Koes DR
    J Comput Aided Mol Des; 2019 Jan; 33(1):19-34. PubMed ID: 29992528
    [TBL] [Abstract][Full Text] [Related]  

  • 25. OnionNet: a Multiple-Layer Intermolecular-Contact-Based Convolutional Neural Network for Protein-Ligand Binding Affinity Prediction.
    Zheng L; Fan J; Mu Y
    ACS Omega; 2019 Oct; 4(14):15956-15965. PubMed ID: 31592466
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Machine learning optimization of cross docking accuracy.
    Bjerrum EJ
    Comput Biol Chem; 2016 Jun; 62():133-44. PubMed ID: 27179709
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deep neural network affinity model for BACE inhibitors in D3R Grand Challenge 4.
    Wang B; Ng HL
    J Comput Aided Mol Des; 2020 Feb; 34(2):201-217. PubMed ID: 31916049
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sfcnn: a novel scoring function based on 3D convolutional neural network for accurate and stable protein-ligand affinity prediction.
    Wang Y; Wei Z; Xi L
    BMC Bioinformatics; 2022 Jun; 23(1):222. PubMed ID: 35676617
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Task-Specific Scoring Functions for Predicting Ligand Binding Poses and Affinity and for Screening Enrichment.
    Ashtawy HM; Mahapatra NR
    J Chem Inf Model; 2018 Jan; 58(1):119-133. PubMed ID: 29190087
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Guiding Conventional Protein-Ligand Docking Software with Convolutional Neural Networks.
    Jiang H; Fan M; Wang J; Sarma A; Mohanty S; Dokholyan NV; Mahdavi M; Kandemir MT
    J Chem Inf Model; 2020 Oct; 60(10):4594-4602. PubMed ID: 33100014
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A new paradigm for applying deep learning to protein-ligand interaction prediction.
    Wang Z; Wang S; Li Y; Guo J; Wei Y; Mu Y; Zheng L; Li W
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38581420
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An Overview of Scoring Functions Used for Protein-Ligand Interactions in Molecular Docking.
    Li J; Fu A; Zhang L
    Interdiscip Sci; 2019 Jun; 11(2):320-328. PubMed ID: 30877639
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Deep Learning in Drug Design: Protein-Ligand Binding Affinity Prediction.
    Rezaei MA; Li Y; Wu D; Li X; Li C
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(1):407-417. PubMed ID: 33360998
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Iterative Knowledge-Based Scoring Functions Derived from Rigid and Flexible Decoy Structures: Evaluation with the 2013 and 2014 CSAR Benchmarks.
    Yan C; Grinter SZ; Merideth BR; Ma Z; Zou X
    J Chem Inf Model; 2016 Jun; 56(6):1013-21. PubMed ID: 26389744
    [TBL] [Abstract][Full Text] [Related]  

  • 35. PharmRF: A machine-learning scoring function to identify the best protein-ligand complexes for structure-based pharmacophore screening with high enrichments.
    Kumar SP; Dixit NY; Patel CN; Rawal RM; Pandya HA
    J Comput Chem; 2022 May; 43(12):847-863. PubMed ID: 35301752
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Iterative Knowledge-Based Scoring Function for Protein-Ligand Interactions by Considering Binding Affinity Information.
    Zhao X; Li H; Zhang K; Huang SY
    J Phys Chem B; 2023 Oct; 127(42):9021-9034. PubMed ID: 37822259
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improving protein-ligand docking results using the Semiempirical quantum mechanics: testing on the PDBbind 2016 core set.
    Mohebbinia Z; Firouzi R; Karimi-Jafari MH
    J Biomol Struct Dyn; 2024 Jan; ():1-11. PubMed ID: 38165642
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lin_F9: A Linear Empirical Scoring Function for Protein-Ligand Docking.
    Yang C; Zhang Y
    J Chem Inf Model; 2021 Sep; 61(9):4630-4644. PubMed ID: 34469692
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Machine learning in computational docking.
    Khamis MA; Gomaa W; Ahmed WF
    Artif Intell Med; 2015 Mar; 63(3):135-52. PubMed ID: 25724101
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Three-Dimensional Convolutional Neural Networks and a Cross-Docked Data Set for Structure-Based Drug Design.
    Francoeur PG; Masuda T; Sunseri J; Jia A; Iovanisci RB; Snyder I; Koes DR
    J Chem Inf Model; 2020 Sep; 60(9):4200-4215. PubMed ID: 32865404
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.