These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 32338965)
1. Neutrinos from Type Ia and Failed Core-Collapse Supernovae at Dark Matter Detectors. Raj N Phys Rev Lett; 2020 Apr; 124(14):141802. PubMed ID: 32338965 [TBL] [Abstract][Full Text] [Related]
2. Signals of the QCD phase transition in core-collapse supernovae. Sagert I; Fischer T; Hempel M; Pagliara G; Schaffner-Bielich J; Mezzacappa A; Thielemann FK; Liebendörfer M Phys Rev Lett; 2009 Feb; 102(8):081101. PubMed ID: 19257729 [TBL] [Abstract][Full Text] [Related]
3. Diffuse neutrino background from past core collapse supernovae. Ando S; Ekanger N; Horiuchi S; Koshio Y Proc Jpn Acad Ser B Phys Biol Sci; 2023; 99(10):460-479. PubMed ID: 38072453 [TBL] [Abstract][Full Text] [Related]
4. Detecting High-Energy Neutrinos from Galactic Supernovae with ATLAS. Wen AY; Argüelles CA; Kheirandish A; Murase K Phys Rev Lett; 2024 Feb; 132(6):061001. PubMed ID: 38394588 [TBL] [Abstract][Full Text] [Related]
5. Detection of neutrinos from supernovae in nearby galaxies. Ando S; Beacom JF; Yüksel H Phys Rev Lett; 2005 Oct; 95(17):171101. PubMed ID: 16383813 [TBL] [Abstract][Full Text] [Related]
6. Low-Energy Physics Reach of Xenon Detectors for Nuclear-Recoil-Based Dark Matter and Neutrino Experiments. Lenardo BG; Xu J; Pereverzev S; Akindele OA; Naim D; Kingston J; Bernstein A; Kazkaz K; Tripathi M; Awe C; Li L; Runge J; Hedges S; An P; Barbeau PS Phys Rev Lett; 2019 Dec; 123(23):231106. PubMed ID: 31868502 [TBL] [Abstract][Full Text] [Related]
7. TeV neutrinos and GeV photons from shock breakout in supernovae. Waxman E; Loeb A Phys Rev Lett; 2001 Aug; 87(7):071101. PubMed ID: 11497877 [TBL] [Abstract][Full Text] [Related]
8. Testing the Origins of Neutrino Mass with Supernova-Neutrino Time Delay. Ge SF; Kong CF; Smirnov AY Phys Rev Lett; 2024 Sep; 133(12):121802. PubMed ID: 39373433 [TBL] [Abstract][Full Text] [Related]
9. Charged-current weak interaction processes in hot and dense matter and its impact on the spectra of neutrinos emitted from protoneutron star cooling. Martínez-Pinedo G; Fischer T; Lohs A; Huther L Phys Rev Lett; 2012 Dec; 109(25):251104. PubMed ID: 23368446 [TBL] [Abstract][Full Text] [Related]
10. Solar neutrinos, helioseismology and the solar internal dynamics. Turck-Chièze S; Couvidat S Rep Prog Phys; 2011 Aug; 74(8):. PubMed ID: 34996296 [TBL] [Abstract][Full Text] [Related]
11. Constraints on light dark matter from core-collapse supernovae. Fayet P; Hooper D; Sigl G Phys Rev Lett; 2006 Jun; 96(21):211302. PubMed ID: 16803226 [TBL] [Abstract][Full Text] [Related]
12. Flavor evolution of the neutronization neutrino burst from an O-Ne-Mg core-collapse supernova. Duan H; Fuller GM; Carlson J; Qian YZ Phys Rev Lett; 2008 Jan; 100(2):021101. PubMed ID: 18232846 [TBL] [Abstract][Full Text] [Related]
14. Neutrino signals from the formation of a black hole: A probe of the equation of state of dense matter. Sumiyoshi K; Yamada S; Suzuki H; Chiba S Phys Rev Lett; 2006 Sep; 97(9):091101. PubMed ID: 17026352 [TBL] [Abstract][Full Text] [Related]
15. TeV neutrinos from core collapse supernovae and hypernovae. Razzaque S; Mészáros P; Waxman E Phys Rev Lett; 2004 Oct; 93(18):181101. PubMed ID: 15525148 [TBL] [Abstract][Full Text] [Related]
16. The type Ia supernova SNLS-03D3bb from a super-Chandrasekhar-mass white dwarf star. Howell DA; Sullivan M; Nugent PE; Ellis RS; Conley AJ; Le Borgne D; Carlberg RG; Guy J; Balam D; Basa S; Fouchez D; Hook IM; Hsiao EY; Neill JD; Pain R; Perrett KM; Pritchet CJ Nature; 2006 Sep; 443(7109):308-11. PubMed ID: 16988705 [TBL] [Abstract][Full Text] [Related]
17. Neutrino and Positron Constraints on Spinning Primordial Black Hole Dark Matter. Dasgupta B; Laha R; Ray A Phys Rev Lett; 2020 Sep; 125(10):101101. PubMed ID: 32955326 [TBL] [Abstract][Full Text] [Related]