These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 32338965)

  • 21. Search for Coherent Elastic Scattering of Solar ^{8}B Neutrinos in the XENON1T Dark Matter Experiment.
    Aprile E; Aalbers J; Agostini F; Ahmed Maouloud S; Alfonsi M; Althueser L; Amaro FD; Andaloro S; Antochi VC; Angelino E; Angevaare JR; Arneodo F; Baudis L; Bauermeister B; Bellagamba L; Benabderrahmane ML; Brown A; Brown E; Bruenner S; Bruno G; Budnik R; Capelli C; Cardoso JMR; Cichon D; Cimmino B; Clark M; Coderre D; Colijn AP; Conrad J; Cuenca J; Cussonneau JP; Decowski MP; Depoian A; Di Gangi P; Di Giovanni A; Di Stefano R; Diglio S; Elykov A; Ferella AD; Fulgione W; Gaemers P; Gaior R; Galloway M; Gao F; Grandi L; Hils C; Hiraide K; Hoetzsch L; Howlett J; Iacovacci M; Itow Y; Joerg F; Kato N; Kazama S; Kobayashi M; Koltman G; Kopec A; Landsman H; Lang RF; Levinson L; Liang S; Lindemann S; Lindner M; Lombardi F; Long J; Lopes JAM; Ma Y; Macolino C; Mahlstedt J; Mancuso A; Manenti L; Manfredini A; Marignetti F; Marrodán Undagoitia T; Martens K; Masbou J; Masson D; Mastroianni S; Messina M; Miuchi K; Mizukoshi K; Molinario A; Morå K; Moriyama S; Mosbacher Y; Murra M; Naganoma J; Ni K; Oberlack U; Odgers K; Palacio J; Pelssers B; Peres R; Pierre M; Pienaar J; Pizzella V; Plante G; Qi J; Qin J; Ramírez García D; Reichard S; Rocchetti A; Rupp N; Dos Santos JMF; Sartorelli G; Schreiner J; Schulte D; Schulze Eißing H; Schumann M; Scotto Lavina L; Selvi M; Semeria F; Shagin P; Shockley E; Silva M; Simgen H; Takeda A; Therreau C; Thers D; Toschi F; Trinchero G; Tunnell C; Valerius K; Vargas M; Volta G; Wei Y; Weinheimer C; Weiss M; Wenz D; Wittweg C; Wolf T; Xu Z; Yamashita M; Ye J; Zavattini G; Zhang Y; Zhu T; Zopounidis JP;
    Phys Rev Lett; 2021 Mar; 126(9):091301. PubMed ID: 33750173
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Revealing the supernova-gamma-ray burst connection with TeV neutrinos.
    Ando S; Beacom JF
    Phys Rev Lett; 2005 Aug; 95(6):061103. PubMed ID: 16090936
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A luminous, blue progenitor system for the type Iax supernova 2012Z.
    McCully C; Jha SW; Foley RJ; Bildsten L; Fong WF; Kirshner RP; Marion GH; Riess AG; Stritzinger MD
    Nature; 2014 Aug; 512(7512):54-6. PubMed ID: 25100479
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Supernova-Neutrino-Boosted Dark Matter from All Galaxies.
    Lin YH; Wu MR
    Phys Rev Lett; 2024 Sep; 133(11):111004. PubMed ID: 39331976
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of inelastic neutrino-nucleus scattering on supernova dynamics and radiated neutrino spectra.
    Langanke K; Martínez-Pinedo G; Müller B; Janka HT; Marek A; Hix WR; Juodagalvis A; Sampaio JM
    Phys Rev Lett; 2008 Jan; 100(1):011101. PubMed ID: 18232750
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dynamical collective calculation of supernova neutrino signals.
    Gava J; Kneller J; Volpe C; McLaughlin GC
    Phys Rev Lett; 2009 Aug; 103(7):071101. PubMed ID: 19792628
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A new mechanism for gravitational-wave emission in core-collapse supernovae.
    Ott CD; Burrows A; Dessart L; Livne E
    Phys Rev Lett; 2006 May; 96(20):201102. PubMed ID: 16803162
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High energy neutrinos from gamma-ray bursts with precursor supernovae.
    Razzaque S; Mészáros P; Waxman E
    Phys Rev Lett; 2003 Jun; 90(24):241103. PubMed ID: 12857183
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Technique for direct eV-scale measurements of the Mu and tau neutrino masses using supernova neutrinos.
    Beacom JF; Boyd RN; Mezzacappa A
    Phys Rev Lett; 2000 Oct; 85(17):3568-71. PubMed ID: 11030952
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An extremely luminous X-ray outburst at the birth of a supernova.
    Soderberg AM; Berger E; Page KL; Schady P; Parrent J; Pooley D; Wang XY; Ofek EO; Cucchiara A; Rau A; Waxman E; Simon JD; Bock DC; Milne PA; Page MJ; Barentine JC; Barthelmy SD; Beardmore AP; Bietenholz MF; Brown P; Burrows A; Burrows DN; Bryngelson G; Cenko SB; Chandra P; Cummings JR; Fox DB; Gal-Yam A; Gehrels N; Immler S; Kasliwal M; Kong AK; Krimm HA; Kulkarni SR; Maccarone TJ; Mészáros P; Nakar E; O'Brien PT; Overzier RA; de Pasquale M; Racusin J; Rea N; York DG
    Nature; 2008 May; 453(7194):469-74. PubMed ID: 18497815
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of a kg-scale archaeological lead-based PbWO
    Beeman JW; Benato G; Bucci C; Canonica L; Carniti P; Celi E; Clemenza M; D'Addabbo A; Danevich FA; Di Domizio S; Di Lorenzo S; Dubovik OM; Ferreiro Iachellini N; Ferroni F; Fiorini E; Fu S; Garai A; Ghislandi S; Gironi L; Gorla P; Gotti C; Guillaumon PV; Helis DL; Kovtun GP; Mancuso M; Marini L; Olmi M; Pagnanini L; Pattavina L; Pessina G; Petricca F; Pirro S; Pozzi S; Puiu A; Quitadamo S; Rothe J; Scherban AP; Schönert S; Solopikhin DA; Strauss R; Tarabini E; Tretyak VI; Tupitsyna IA; Wagner V
    Appl Radiat Isot; 2023 Apr; 194():110704. PubMed ID: 36731392
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Neutrinos from supernovae as a trigger for gravitational wave search.
    Pagliaroli G; Vissani F; Coccia E; Fulgione W
    Phys Rev Lett; 2009 Jul; 103(3):031102. PubMed ID: 19659263
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dark Matter Ignition of Type Ia Supernovae.
    Bramante J
    Phys Rev Lett; 2015 Oct; 115(14):141301. PubMed ID: 26551803
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Neutrino astrophysics: a new tool for exploring the universe.
    Waxman E
    Science; 2007 Jan; 315(5808):63-5. PubMed ID: 17204639
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Toward Powerful Probes of Neutrino Self-Interactions in Supernovae.
    Chang PW; Esteban I; Beacom JF; Thompson TA; Hirata CM
    Phys Rev Lett; 2023 Aug; 131(7):071002. PubMed ID: 37656847
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Physical mechanism of core-collapse supernovae that neutrinos drive.
    Yamada S; Nagakura H; Akaho R; Harada A; Furusawa S; Iwakami W; Okawa H; Matsufuru H; Sumiyoshi K
    Proc Jpn Acad Ser B Phys Biol Sci; 2024; 100(3):190-233. PubMed ID: 38462501
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nucleosynthesis and Clump Formation in a Core-Collapse Supernova.
    Kifonidis K; Plewa T; Janka H; Müller E
    Astrophys J; 2000 Mar; 531(2):L123-L126. PubMed ID: 10688768
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Invited review article: IceCube: an instrument for neutrino astronomy.
    Halzen F; Klein SR
    Rev Sci Instrum; 2010 Aug; 81(8):081101. PubMed ID: 20815596
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Collisional Flavor Instabilities of Supernova Neutrinos.
    Johns L
    Phys Rev Lett; 2023 May; 130(19):191001. PubMed ID: 37243645
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Low-Energy Supernovae Severely Constrain Radiative Particle Decays.
    Caputo A; Janka HT; Raffelt G; Vitagliano E
    Phys Rev Lett; 2022 Jun; 128(22):221103. PubMed ID: 35714248
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.