These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 32339117)

  • 1. Computer-aided fixation detection using retinal birefringence in multi-modal ophthalmic systems: Computer, electronics, algorithms.
    Gramatikov BI
    Comput Biol Med; 2020 Apr; 119():103672. PubMed ID: 32339117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New pediatric vision screener employing polarization-modulated, retinal-birefringence-scanning-based strabismus detection and bull's eye focus detection with an improved target system: opto-mechanical design and operation.
    Irsch K; Gramatikov BI; Wu YK; Guyton DL
    J Biomed Opt; 2014 Jun; 19(6):067004. PubMed ID: 24911020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved eye-fixation detection using polarization-modulated retinal birefringence scanning, immune to corneal birefringence.
    Irsch K; Gramatikov BI; Wu YK; Guyton DL
    Opt Express; 2014 Apr; 22(7):7972-88. PubMed ID: 24718173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling and minimizing interference from corneal birefringence in retinal birefringence scanning for foveal fixation detection.
    Irsch K; Gramatikov B; Wu YK; Guyton D
    Biomed Opt Express; 2011 Jul; 2(7):1955-68. PubMed ID: 21750772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detecting central fixation by means of artificial neural networks in a pediatric vision screener using retinal birefringence scanning.
    Gramatikov BI
    Biomed Eng Online; 2017 Apr; 16(1):52. PubMed ID: 28449714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New pediatric vision screener, part II: electronics, software, signal processing and validation.
    Gramatikov BI; Irsch K; Wu YK; Guyton DL
    Biomed Eng Online; 2016 Feb; 15():15. PubMed ID: 26847626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Attention attraction in an ophthalmic diagnostic device using sound-modulated fixation targets.
    Gramatikov BI; Rangarajan S; Irsch K; Guyton DL
    Med Eng Phys; 2016 Aug; 38(8):818-21. PubMed ID: 27245750
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detecting fixation on a target using time-frequency distributions of a retinal birefringence scanning signal.
    Gramatikov B
    Biomed Eng Online; 2013 May; 12():41. PubMed ID: 23668264
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated detection of ocular alignment with binocular retinal birefringence scanning.
    Hunter DG; Shah AS; Sau S; Nassif D; Guyton DL
    Appl Opt; 2003 Jun; 42(16):3047-53. PubMed ID: 12790456
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A no-moving-parts sensor for the detection of eye fixation using polarised light and retinal birefringence information.
    Gramatikov BI; Guyton DL
    J Med Eng Technol; 2017 May; 41(4):249-256. PubMed ID: 28122478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mathematical modeling of retinal birefringence scanning.
    Hunter DG; Sandruck JC; Sau S; Patel SN; Guyton DL
    J Opt Soc Am A Opt Image Sci Vis; 1999 Sep; 16(9):2103-11. PubMed ID: 10474891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Directional eye fixation sensor using birefringence-based foveal detection.
    Gramatikov BI; Zalloum OH; Wu YK; Hunter DG; Guyton DL
    Appl Opt; 2007 Apr; 46(10):1809-18. PubMed ID: 17356625
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A device for continuous monitoring of true central fixation based on foveal birefringence.
    Gramatikov B; Irsch K; Müllenbroich M; Frindt N; Qu Y; Gutmark R; Wu YK; Guyton D
    Ann Biomed Eng; 2013 Sep; 41(9):1968-78. PubMed ID: 23645511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Birefringence-based eye fixation monitor with no moving parts.
    Gramatikov BI; Zalloum OH; Wu YK; Hunter DG; Guyton DL
    J Biomed Opt; 2006; 11(3):34025. PubMed ID: 16822074
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Corneal birefringence compensation for polarization sensitive optical coherence tomography of the human retina.
    Pircher M; Götzinger E; Baumann B; Hitzenberger CK
    J Biomed Opt; 2007; 12(4):041210. PubMed ID: 17867799
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of central fixation using short-time autoregressive spectral estimation during retinal birefringence scanning.
    Gramatikov BI
    Med Eng Phys; 2015 Sep; 37(9):905-10. PubMed ID: 26213271
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A NEW METHOD OF POLARIZATION MICROSCOPIC ANALYSIS. I. SCANNING WITH A BIREFRINGENCE DETECTION SYSTEM.
    ALLEN RD; BRAULT J; MOORE RD
    J Cell Biol; 1963 Aug; 18(2):223-35. PubMed ID: 14079486
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated detection of foveal fixation by use of retinal birefringence scanning.
    Hunter DG; Patel SN; Guyton DL
    Appl Opt; 1999 Mar; 38(7):1273-9. PubMed ID: 18305742
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Primate retina imaging with polarization-sensitive optical coherence tomography.
    Ducros MG; Marsack JD; Rylander HG; Thomsen SL; Milner TE
    J Opt Soc Am A Opt Image Sci Vis; 2001 Dec; 18(12):2945-56. PubMed ID: 11760194
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.