These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 32339122)

  • 1. A review of computational approaches for evaluation of rehabilitation exercises.
    Liao Y; Vakanski A; Xian M; Paul D; Baker R
    Comput Biol Med; 2020 Apr; 119():103687. PubMed ID: 32339122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Deep Learning Framework for Assessing Physical Rehabilitation Exercises.
    Liao Y; Vakanski A; Xian M
    IEEE Trans Neural Syst Rehabil Eng; 2020 Feb; 28(2):468-477. PubMed ID: 31940544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Examination of the Accuracy of Movement Tracking Systems for Monitoring Exercise for Musculoskeletal Rehabilitation.
    Obukhov A; Volkov A; Pchelintsev A; Nazarova A; Teselkin D; Surkova E; Fedorchuk I
    Sensors (Basel); 2023 Sep; 23(19):. PubMed ID: 37836887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combined Vision and Wearable Sensors-based System for Movement Analysis in Rehabilitation.
    Spasojević S; Ilić TV; Milanović S; Potkonjak V; Rodić A; Santos-Victor J
    Methods Inf Med; 2017 Mar; 56(2):95-111. PubMed ID: 27922660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physiotherapy rehabilitation after total knee or hip replacement: an evidence-based analysis.
    Medical Advisory Secretariat
    Ont Health Technol Assess Ser; 2005; 5(8):1-91. PubMed ID: 23074477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A deep learning system to monitor and assess rehabilitation exercises in home-based remote and unsupervised conditions.
    Mennella C; Maniscalco U; Pietro G; Esposito M
    Comput Biol Med; 2023 Nov; 166():107485. PubMed ID: 37742419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A low-cost virtual coach for 2D video-based compensation assessment of upper extremity rehabilitation exercises.
    Cóias AR; Lee MH; Bernardino A
    J Neuroeng Rehabil; 2022 Jul; 19(1):83. PubMed ID: 35902897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Autonomous modeling of repetitive movement for rehabilitation exercise monitoring.
    Jatesiktat P; Lim GM; Kuah CWK; Anopas D; Ang WT
    BMC Med Inform Decis Mak; 2022 Jul; 22(1):175. PubMed ID: 35780122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The KIMORE Dataset: KInematic Assessment of MOvement and Clinical Scores for Remote Monitoring of Physical REhabilitation.
    Capecci M; Ceravolo MG; Ferracuti F; Iarlori S; Monteriu A; Romeo L; Verdini F
    IEEE Trans Neural Syst Rehabil Eng; 2019 Jul; 27(7):1436-1448. PubMed ID: 31217121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluating the Performance of Balance Physiotherapy Exercises Using a Sensory Platform: The Basis for a Persuasive Balance Rehabilitation Virtual Coaching System.
    Tsakanikas VD; Gatsios D; Dimopoulos D; Pardalis A; Pavlou M; Liston MB; Fotiadis DI
    Front Digit Health; 2020; 2():545885. PubMed ID: 34713032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep Learning for Sensor-Based Rehabilitation Exercise Recognition and Evaluation.
    Zhu ZA; Lu YC; You CH; Chiang CK
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30791648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated Assessment of Balance Rehabilitation Exercises With a Data-Driven Scoring Model: Algorithm Development and Validation Study.
    Tsakanikas V; Gatsios D; Pardalis A; Tsiouris KM; Georga E; Bamiou DE; Pavlou M; Nikitas C; Kikidis D; Walz I; Maurer C; Fotiadis D
    JMIR Rehabil Assist Technol; 2022 Aug; 9(3):e37229. PubMed ID: 36044258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rehab@home: a tool for home-based motor function rehabilitation.
    Faria C; Silva J; Campilho A
    Disabil Rehabil Assist Technol; 2015 Jan; 10(1):67-74. PubMed ID: 24070452
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic Assessment of Functional Movement Screening Exercises with Deep Learning Architectures.
    Spilz A; Munz M
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A review of the evolution of scientific literature on technology-assisted approaches using RGB-D sensors for musculoskeletal health monitoring.
    Mangal NK; Tiwari AK
    Comput Biol Med; 2021 May; 132():104316. PubMed ID: 33721734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine Learning Approach for Fatigue Estimation in Sit-to-Stand Exercise.
    Aguirre A; Pinto MJ; Cifuentes CA; Perdomo O; Díaz CAR; Múnera M
    Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adherence monitoring of rehabilitation exercise with inertial sensors: A clinical validation study.
    Bavan L; Surmacz K; Beard D; Mellon S; Rees J
    Gait Posture; 2019 May; 70():211-217. PubMed ID: 30903993
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Movement-based interaction applied to physical rehabilitation therapies.
    Garrido Navarro JE; Ruiz Penichet VM; Lozano Pérez MD
    J Med Internet Res; 2014 Dec; 16(12):e281. PubMed ID: 25491148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinect and wearable inertial sensors for motor rehabilitation programs at home: state of the art and an experimental comparison.
    Milosevic B; Leardini A; Farella E
    Biomed Eng Online; 2020 Apr; 19(1):25. PubMed ID: 32326957
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 12.