These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 32339162)

  • 1. Decentralized control of insect walking: A simple neural network explains a wide range of behavioral and neurophysiological results.
    Schilling M; Cruse H
    PLoS Comput Biol; 2020 Apr; 16(4):e1007804. PubMed ID: 32339162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insect walking is based on a decentralized architecture revealing a simple and robust controller.
    Cruse H; Dürr V; Schmitz J
    Philos Trans A Math Phys Eng Sci; 2007 Jan; 365(1850):221-50. PubMed ID: 17148058
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural control and adaptive neural forward models for insect-like, energy-efficient, and adaptable locomotion of walking machines.
    Manoonpong P; Parlitz U; Wörgötter F
    Front Neural Circuits; 2013; 7():12. PubMed ID: 23408775
    [TBL] [Abstract][Full Text] [Related]  

  • 4. neuroWalknet, a controller for hexapod walking allowing for context dependent behavior.
    Schilling M; Cruse H
    PLoS Comput Biol; 2023 Jan; 19(1):e1010136. PubMed ID: 36693085
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intra- and intersegmental influences among central pattern generating networks in the walking system of the stick insect.
    Mantziaris C; Bockemühl T; Holmes P; Borgmann A; Daun S; Büschges A
    J Neurophysiol; 2017 Oct; 118(4):2296-2310. PubMed ID: 28724783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studying the neural basis of adaptive locomotor behavior in insects.
    Gruhn M; Rosenbaum P; Bollhagen HP; Bueschges A
    J Vis Exp; 2011 Apr; (50):. PubMed ID: 21525839
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulation of complex movements using artificial neural networks.
    Cruse H; Dean J; Kindermann T; Schmitz J; Schumm M
    Z Naturforsch C J Biosci; 1998; 53(7-8):628-38. PubMed ID: 9755516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Walknet, a bio-inspired controller for hexapod walking.
    Schilling M; Hoinville T; Schmitz J; Cruse H
    Biol Cybern; 2013 Aug; 107(4):397-419. PubMed ID: 23824506
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensory feedback induced by front-leg stepping entrains the activity of central pattern generators in caudal segments of the stick insect walking system.
    Borgmann A; Hooper SL; Büschges A
    J Neurosci; 2009 Mar; 29(9):2972-83. PubMed ID: 19261892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deriving neural network controllers from neuro-biological data: implementation of a single-leg stick insect controller.
    von Twickel A; Büschges A; Pasemann F
    Biol Cybern; 2011 Feb; 104(1-2):95-119. PubMed ID: 21327828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neurodynamic modeling of the fruit fly Drosophila melanogaster.
    Goldsmith CA; Szczecinski NS; Quinn RD
    Bioinspir Biomim; 2020 Sep; 15(6):065003. PubMed ID: 32924978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stereotypic leg searching movements in the stick insect: kinematic analysis, behavioural context and simulation.
    Dürr V
    J Exp Biol; 2001 May; 204(Pt 9):1589-604. PubMed ID: 11398748
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A reflexive neural network for dynamic biped walking control.
    Geng T; Porr B; Wörgötter F
    Neural Comput; 2006 May; 18(5):1156-96. PubMed ID: 16595061
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Central pattern generating networks in insect locomotion.
    Mantziaris C; Bockemühl T; Büschges A
    Dev Neurobiol; 2020 Jan; 80(1-2):16-30. PubMed ID: 32128970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A hierarchical model for external electrical control of an insect, accounting for inter-individual variation of muscle force properties.
    Owaki D; Dürr V; Schmitz J
    Elife; 2023 Sep; 12():. PubMed ID: 37703327
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intersegmental coordination of walking movements in stick insects.
    Ludwar BCh; Göritz ML; Schmidt J
    J Neurophysiol; 2005 Mar; 93(3):1255-65. PubMed ID: 15525808
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hexapod Walking: an expansion to Walknet dealing with leg amputations and force oscillations.
    Schilling M; Cruse H; Arena P
    Biol Cybern; 2007 Mar; 96(3):323-40. PubMed ID: 17106698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuous Online Adaptation of Bioinspired Adaptive Neuroendocrine Control for Autonomous Walking Robots.
    Homchanthanakul J; Manoonpong P
    IEEE Trans Neural Netw Learn Syst; 2022 May; 33(5):1833-1845. PubMed ID: 34669583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A neural network with central pattern generators entrained by sensory feedback controls walking of a bipedal model.
    Li W; Szczecinski NS; Quinn RD
    Bioinspir Biomim; 2017 Oct; 12(6):065002. PubMed ID: 28748830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A mathematical modeling study of inter-segmental coordination during stick insect walking.
    Daun-Gruhn S
    J Comput Neurosci; 2011 Apr; 30(2):255-78. PubMed ID: 20567889
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.