These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 32339410)

  • 21. Nanoscale superstructures assembled by polymerase chain reaction (PCR): programmable construction, structural diversity, and emerging applications.
    Kuang H; Ma W; Xu L; Wang L; Xu C
    Acc Chem Res; 2013 Nov; 46(11):2341-54. PubMed ID: 23742672
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interlocked DNA topologies for nanotechnology.
    Valero J; Lohmann F; Famulok M
    Curr Opin Biotechnol; 2017 Dec; 48():159-167. PubMed ID: 28505598
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nanoscale vesicles assembled from non-planar cyclic molecules for efficient cell penetration.
    Tang H; Gu Z; Li C; Li Z; Wu W; Jiang X
    Biomater Sci; 2019 May; 7(6):2552-2558. PubMed ID: 30973552
    [TBL] [Abstract][Full Text] [Related]  

  • 24. "Nano-oddities": unusual nucleic acid assemblies for DNA-based nanostructures and nanodevices.
    Yatsunyk LA; Mendoza O; Mergny JL
    Acc Chem Res; 2014 Jun; 47(6):1836-44. PubMed ID: 24871086
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Kinetic trapping - a strategy for directing the self-assembly of unique functional nanostructures.
    Yan Y; Huang J; Tang BZ
    Chem Commun (Camb); 2016 Oct; 52(80):11870-84. PubMed ID: 27494003
    [TBL] [Abstract][Full Text] [Related]  

  • 26. DNA-enabled integrated molecular systems for computation and sensing.
    LaBoda C; Duschl H; Dwyer CL
    Acc Chem Res; 2014 Jun; 47(6):1816-24. PubMed ID: 24849225
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Base-Sequence-Independent Efficient Redox Switching of Self-Assembled DNA Nanocages.
    Wang B; Song L; Jin B; Deng N; Wu X; He J; Deng Z; Li Y
    Chembiochem; 2019 Nov; 20(21):2743-2746. PubMed ID: 31100196
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High-tech applications of self-assembling supramolecular nanostructured gel-phase materials: from regenerative medicine to electronic devices.
    Hirst AR; Escuder B; Miravet JF; Smith DK
    Angew Chem Int Ed Engl; 2008; 47(42):8002-18. PubMed ID: 18825737
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Expanding the solvent chemical space for self-assembly of dipeptide nanostructures.
    Mason TO; Chirgadze DY; Levin A; Adler-Abramovich L; Gazit E; Knowles TP; Buell AK
    ACS Nano; 2014 Feb; 8(2):1243-53. PubMed ID: 24422499
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Programmable dynamic steady states in ATP-driven nonequilibrium DNA systems.
    Heinen L; Walther A
    Sci Adv; 2019 Jul; 5(7):eaaw0590. PubMed ID: 31334349
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chemical-Fuel-Driven Assembly in Macromolecular Science: Recent Advances and Challenges.
    Leng Z; Peng F; Hao X
    Chempluschem; 2020 Jun; 85(6):1190-1199. PubMed ID: 32584522
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fe-CP-based Catalytic Oxidation and Dissipative Self-Assembly of a Ferrocenyl Surfactant Applied in DNA Capture and Release.
    Liu T; Zhu L; Li C; Yu Y; Zhang Z; Liu H; Wang L; Li Y
    ACS Omega; 2024 Jun; 9(22):23772-23781. PubMed ID: 38854516
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Controlled Synthesis of Polyaniline-Based Nanomaterials with Self-Assembly and Interface Manipulation.
    Kanzhigitova D; Abutalip M; Nazir F; Amze M; Askar P; Yeszhan Y; Pham TT; Rakhmetullayeva R; Adilov S; Nuraje N
    Langmuir; 2024 Jan; 40(4):2183-2190. PubMed ID: 38236758
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Building DNA nanostructures for molecular computation, templated assembly, and biological applications.
    Rangnekar A; LaBean TH
    Acc Chem Res; 2014 Jun; 47(6):1778-88. PubMed ID: 24720350
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spatiotemporal Control of Supramolecular Self-Assembly and Function.
    Zhan J; Cai Y; Ji S; He S; Cao Y; Ding D; Wang L; Yang Z
    ACS Appl Mater Interfaces; 2017 Mar; 9(11):10012-10018. PubMed ID: 28252276
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Diverse Supramolecular Nanofiber Networks Assembled by Functional Low-Complexity Domains.
    An B; Wang X; Cui M; Gui X; Mao X; Liu Y; Li K; Chu C; Pu J; Ren S; Wang Y; Zhong G; Lu TK; Liu C; Zhong C
    ACS Nano; 2017 Jul; 11(7):6985-6995. PubMed ID: 28609612
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dissipative Self-Assembly of Photoluminescent Silicon Nanocrystals.
    Grötsch RK; Angı A; Mideksa YG; Wanzke C; Tena-Solsona M; Feige MJ; Rieger B; Boekhoven J
    Angew Chem Int Ed Engl; 2018 Oct; 57(44):14608-14612. PubMed ID: 30040877
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Kinetically Controlled Lifetimes in Redox-Responsive Transient Supramolecular Hydrogels.
    Wojciechowski JP; Martin AD; Thordarson P
    J Am Chem Soc; 2018 Feb; 140(8):2869-2874. PubMed ID: 29406709
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Kinetically Trapped Supramolecular Assembly of Perylene Dianhydride Derivative in Methanol: Optical Spectra, Morphology, and Mechanisms.
    Lü B; You S; Li P; Li C; Müllen K; Yin M
    Chemistry; 2017 Jan; 23(2):397-401. PubMed ID: 27761953
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Using phosphatases to generate self-assembled nanostructures and their applications.
    Zhang J; Gao J; Chen M; Yang Z
    Antioxid Redox Signal; 2014 May; 20(14):2179-90. PubMed ID: 24180369
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.