These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 32339583)
41. Immobilization of the recombinant invertase INVB from Zymomonas mobilis on Nylon-6. Vallejo-Becerra V; Vásquez-Bahena JM; Santiago-Hernández JA; Hidalgo-Lara ME J Ind Microbiol Biotechnol; 2008 Nov; 35(11):1289-95. PubMed ID: 18712547 [TBL] [Abstract][Full Text] [Related]
42. Self-cloning significantly enhances the production of catalase in Bacillus subtilis WSHDZ-01. Xu S; Guo Y; Du G; Zhou J; Chen J Appl Biochem Biotechnol; 2014 Aug; 173(8):2152-62. PubMed ID: 24962587 [TBL] [Abstract][Full Text] [Related]
43. Immobilization of Recombinant Human Catalase on Gold and Silver Nanoparticles. Pudlarz AM; Czechowska E; Ranoszek-Soliwoda K; Tomaszewska E; Celichowski G; Grobelny J; Szemraj J Appl Biochem Biotechnol; 2018 Jul; 185(3):717-735. PubMed ID: 29299755 [TBL] [Abstract][Full Text] [Related]
44. Immobilized Biocatalyst Engineering: High throughput enzyme immobilization for the integration of biocatalyst improvement strategies. Rodríguez-Núñez K; Bernal C; Martínez R Int J Biol Macromol; 2021 Feb; 170():61-70. PubMed ID: 33358947 [TBL] [Abstract][Full Text] [Related]
45. Heterologous expression and characterization of a new heme-catalase in Bacillus subtilis 168. Philibert T; Rao Z; Yang T; Zhou J; Huang G; Irene K; Samuel N J Ind Microbiol Biotechnol; 2016 Jun; 43(6):729-40. PubMed ID: 27016935 [TBL] [Abstract][Full Text] [Related]
46. Display of Bacterial Exochitanase on Ullah M; Xia Y; Alshaya DS; Han J; Attia KA; Shah TA; Chen H Molecules; 2024 Sep; 29(18):. PubMed ID: 39339301 [TBL] [Abstract][Full Text] [Related]
47. [Immobilization of Penicillium vitale Pidopl. et Bilai catalase by inorganic carriers]. Gudkova LV; Latyshko NV; Degtiarv RG; Gulyĭ MF; Ianishpolvskiĭ VV; Tertykh VA Ukr Biokhim Zh (1978); 1980; 52(5):614-23. PubMed ID: 6266097 [TBL] [Abstract][Full Text] [Related]
48. The Si-tag for immobilizing proteins on a silica surface. Taniguchi K; Nomura K; Hata Y; Nishimura T; Asami Y; Kuroda A Biotechnol Bioeng; 2007 Apr; 96(6):1023-9. PubMed ID: 17013933 [TBL] [Abstract][Full Text] [Related]
49. Covalent immobilization of recombinant organophosphorus hydrolase on spores of Bacillus subtilis. Falahati-Pour SK; Lotfi AS; Ahmadian G; Baghizadeh A J Appl Microbiol; 2015 Apr; 118(4):976-88. PubMed ID: 25565038 [TBL] [Abstract][Full Text] [Related]
50. Clostridium thermocellum Nitrilase Expression and Surface Display on Bacillus subtilis Spores. Chen H; Zhang T; Sun T; Ni Z; Le Y; Tian R; Chen Z; Zhang C J Mol Microbiol Biotechnol; 2015; 25(6):381-7. PubMed ID: 26629931 [TBL] [Abstract][Full Text] [Related]
51. Simultaneous co-immobilization of glucose oxidase and catalase in their substrates. Ozyilmaz G; Tukel SS Prikl Biokhim Mikrobiol; 2007; 43(1):36-41. PubMed ID: 17345856 [TBL] [Abstract][Full Text] [Related]
52. Specific and reversible immobilization of NADH oxidase on functionalized carbon nanotubes. Wang L; Wei L; Chen Y; Jiang R J Biotechnol; 2010 Oct; 150(1):57-63. PubMed ID: 20630484 [TBL] [Abstract][Full Text] [Related]
53. Immobilization of Soybean Lipoxygenase on Nanoporous Rice Husk Silica by Adsorption: Retention of Enzyme Function and Catalytic Potential. Ngin P; Cho K; Han O Molecules; 2021 Jan; 26(2):. PubMed ID: 33430075 [TBL] [Abstract][Full Text] [Related]
54. Immobilization of engineered arginase on gold-carbon nanotubes. Lee GK; Kwok SY; Yu CH; Tam K; Chong HC; Leung YC; Tsang SC Chem Commun (Camb); 2012 Aug; 48(62):7693-5. PubMed ID: 22779080 [TBL] [Abstract][Full Text] [Related]
55. Immobilization of enzymes on fumed silica nanoparticles for applications in nonaqueous media. Cruz JC; Würges K; Kramer M; Pfromm PH; Rezac ME; Czermak P Methods Mol Biol; 2011; 743():147-60. PubMed ID: 21553189 [TBL] [Abstract][Full Text] [Related]
56. Enzyme immobilization in a biomimetic silica support. Luckarift HR; Spain JC; Naik RR; Stone MO Nat Biotechnol; 2004 Feb; 22(2):211-3. PubMed ID: 14716316 [TBL] [Abstract][Full Text] [Related]
57. The silica-binding Si-tag functions as an affinity tag even under denaturing conditions. Ikeda T; Motomura K; Agou Y; Ishida T; Hirota R; Kuroda A Protein Expr Purif; 2011 Jun; 77(2):173-7. PubMed ID: 21277372 [TBL] [Abstract][Full Text] [Related]
58. In vivo self-assembly of stable green fluorescent protein fusion particles and their uses in enzyme immobilization. Venning-Slater M; Hooks DO; Rehm BH Appl Environ Microbiol; 2014 May; 80(10):3062-71. PubMed ID: 24610847 [TBL] [Abstract][Full Text] [Related]
59. Production of Cyanocarboxylic Acid by Zhong X; Yang S; Su X; Shen X; Zhao W; Chan Z J Microbiol Biotechnol; 2019 May; 29(5):749-757. PubMed ID: 30955259 [TBL] [Abstract][Full Text] [Related]
60. Antibacterial and antibiofilm surfaces through polydopamine-assisted immobilization of lysostaphin as an antibacterial enzyme. Yeroslavsky G; Girshevitz O; Foster-Frey J; Donovan DM; Rahimipour S Langmuir; 2015 Jan; 31(3):1064-73. PubMed ID: 25547537 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]