These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 32339588)

  • 1. Sugar-cane bagasse cellulose-based scaffolds promote multi-cellular interactions, angiogenesis and reduce inflammation for skin tissue regeneration.
    Ramphul H; Gimié F; Andries J; Jhurry D; Bhaw-Luximon A
    Int J Biol Macromol; 2020 Aug; 157():296-310. PubMed ID: 32339588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation and structural characterization of surface modified microporous bacterial cellulose scaffolds: A potential material for skin regeneration applications in vitro and in vivo.
    Khan S; Ul-Islam M; Ikram M; Islam SU; Ullah MW; Israr M; Jang JH; Yoon S; Park JK
    Int J Biol Macromol; 2018 Oct; 117():1200-1210. PubMed ID: 29894790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved Multicellular Response, Biomimetic Mineralization, Angiogenesis, and Reduced Foreign Body Response of Modified Polydioxanone Scaffolds for Skeletal Tissue Regeneration.
    Goonoo N; Fahmi A; Jonas U; Gimié F; Arsa IA; Bénard S; Schönherr H; Bhaw-Luximon A
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):5834-5850. PubMed ID: 30640432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Green seaweeds ulvan-cellulose scaffolds enhance in vitro cell growth and in vivo angiogenesis for skin tissue engineering.
    Madub K; Goonoo N; Gimié F; Ait Arsa I; Schönherr H; Bhaw-Luximon A
    Carbohydr Polym; 2021 Jan; 251():117025. PubMed ID: 33142585
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aloesin-loaded chitosan/cellulose-based scaffold promotes skin tissue regeneration.
    Hameed A; Tariq M; Sadia S; Alam MR; Haider A; Wahedi HM
    Int J Biol Macromol; 2024 Jul; 273(Pt 1):133030. PubMed ID: 38857730
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrospun poly(hydroxybutyrate) scaffolds promote engraftment of human skin equivalents via macrophage M2 polarization and angiogenesis.
    Castellano D; Sanchis A; Blanes M; Pérez Del Caz MD; Ruiz-Saurí A; Piquer-Gil M; Pelacho B; Marco B; Garcia N; Ontoria-Oviedo I; Cambra V; Prosper F; Sepúlveda P
    J Tissue Eng Regen Med; 2018 Feb; 12(2):e983-e994. PubMed ID: 28111928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acceleration of dermal wound healing by using electrospun curcumin-loaded poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) fibrous mats.
    Fu SZ; Meng XH; Fan J; Yang LL; Wen QL; Ye SJ; Lin S; Wang BQ; Chen LL; Wu JB; Chen Y; Fan JM; Li Z
    J Biomed Mater Res B Appl Biomater; 2014 Apr; 102(3):533-42. PubMed ID: 24115465
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulating matrix-multicellular response using polysucrose-blended with poly-L-lactide or polydioxanone in electrospun scaffolds for skin tissue regeneration.
    Chummun I; Bhaw-Luximon A; Jhurry D
    J Biomed Mater Res A; 2018 Dec; 106(12):3275-3291. PubMed ID: 30367544
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Promotion of skin regeneration in diabetic rats by electrospun core-sheath fibers loaded with basic fibroblast growth factor.
    Yang Y; Xia T; Zhi W; Wei L; Weng J; Zhang C; Li X
    Biomaterials; 2011 Jun; 32(18):4243-54. PubMed ID: 21402405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a chitosan nanofibrillar scaffold for skin repair and regeneration.
    Tchemtchoua VT; Atanasova G; Aqil A; Filée P; Garbacki N; Vanhooteghem O; Deroanne C; Noël A; Jérome C; Nusgens B; Poumay Y; Colige A
    Biomacromolecules; 2011 Sep; 12(9):3194-204. PubMed ID: 21761871
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D-printed chitosan-based scaffolds: An in vitro study of human skin cell growth and an in-vivo wound healing evaluation in experimental diabetes in rats.
    Intini C; Elviri L; Cabral J; Mros S; Bergonzi C; Bianchera A; Flammini L; Govoni P; Barocelli E; Bettini R; McConnell M
    Carbohydr Polym; 2018 Nov; 199():593-602. PubMed ID: 30143167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polysucrose hydrogel and nanofiber scaffolds for skin tissue regeneration: Architecture and cell response.
    Chummun I; Gimié F; Goonoo N; Arsa IA; Cordonin C; Jhurry D; Bhaw-Luximon A
    Mater Sci Eng C Mater Biol Appl; 2022 Apr; 135():112694. PubMed ID: 35581079
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface-structured bacterial cellulose loaded with hUSCs accelerate skin wound healing by promoting angiogenesis in rats.
    Cao YM; Liu MY; Xue ZW; Qiu Y; Li J; Wang Y; Wu QK
    Biochem Biophys Res Commun; 2019 Sep; 516(4):1167-1174. PubMed ID: 31284954
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A denatured collagen microfiber scaffold seeded with human fibroblasts and keratinocytes for skin grafting.
    Kempf M; Miyamura Y; Liu PY; Chen AC; Nakamura H; Shimizu H; Tabata Y; Kimble RM; McMillan JR
    Biomaterials; 2011 Jul; 32(21):4782-92. PubMed ID: 21477857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo biocompatibility assessment of poly (ether imide) electrospun scaffolds.
    Haase T; Krost A; Sauter T; Kratz K; Peter J; Kamann S; Jung F; Lendlein A; Zohlnhöfer D; Rüder C
    J Tissue Eng Regen Med; 2017 Apr; 11(4):1034-1044. PubMed ID: 25712330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microporous dermal-mimetic electrospun scaffolds pre-seeded with fibroblasts promote tissue regeneration in full-thickness skin wounds.
    Bonvallet PP; Schultz MJ; Mitchell EH; Bain JL; Culpepper BK; Thomas SJ; Bellis SL
    PLoS One; 2015; 10(3):e0122359. PubMed ID: 25793720
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Collagen-cellulose nanocrystal scaffolds containing curcumin-loaded microspheres on infected full-thickness burns repair.
    Guo R; Lan Y; Xue W; Cheng B; Zhang Y; Wang C; Ramakrishna S
    J Tissue Eng Regen Med; 2017 Dec; 11(12):3544-3555. PubMed ID: 28326684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface-structured bacterial cellulose with guided assembly-based biolithography (GAB).
    Bottan S; Robotti F; Jayathissa P; Hegglin A; Bahamonde N; Heredia-Guerrero JA; Bayer IS; Scarpellini A; Merker H; Lindenblatt N; Poulikakos D; Ferrari A
    ACS Nano; 2015 Jan; 9(1):206-19. PubMed ID: 25525956
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanofibrous poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/chitosan scaffolds for skin regeneration.
    Veleirinho B; Coelho DS; Dias PF; Maraschin M; Ribeiro-do-Valle RM; Lopes-da-Silva JA
    Int J Biol Macromol; 2012 Nov; 51(4):343-50. PubMed ID: 22652216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro biocompatibility of sheath-core cellulose-acetate-based electrospun scaffolds towards endothelial cells and platelets.
    Rubenstein DA; Venkitachalam SM; Zamfir D; Wang F; Lu H; Frame MD; Yin W
    J Biomater Sci Polym Ed; 2010; 21(13):1713-36. PubMed ID: 20537251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.