BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 32340319)

  • 1. 3D Bioprinted Vascularized Tumour for Drug Testing.
    Han S; Kim S; Chen Z; Shin HK; Lee SY; Moon HE; Paek SH; Park S
    Int J Mol Sci; 2020 Apr; 21(8):. PubMed ID: 32340319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D modeling of normal skin and cutaneous squamous cell carcinoma. A comparative study in 2D cultures, spheroids, and 3D bioprinted systems.
    Kurzyk A; Szumera-Ciećkiewicz A; Miłoszewska J; Chechlińska M
    Biofabrication; 2024 Feb; 16(2):. PubMed ID: 38377605
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ECM concentration and cell-mediated traction forces play a role in vascular network assembly in 3D bioprinted tissue.
    Zhang G; Varkey M; Wang Z; Xie B; Hou R; Atala A
    Biotechnol Bioeng; 2020 Apr; 117(4):1148-1158. PubMed ID: 31840798
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advanced Spheroid, Tumouroid and 3D Bioprinted In-Vitro Models of Adult and Paediatric Glioblastoma.
    Orcheston-Findlay L; Bax S; Utama R; Engel M; Govender D; O'Neill G
    Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33803967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioprintable Alginate/Gelatin Hydrogel 3D In Vitro Model Systems Induce Cell Spheroid Formation.
    Jiang T; Munguia-Lopez J; Flores-Torres S; Grant J; Vijayakumar S; De Leon-Rodriguez A; Kinsella JM
    J Vis Exp; 2018 Jul; (137):. PubMed ID: 30010644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Laser-based 3D bioprinting for spatial and size control of tumor spheroids and embryoid bodies.
    Kingsley DM; Roberge CL; Rudkouskaya A; Faulkner DE; Barroso M; Intes X; Corr DT
    Acta Biomater; 2019 Sep; 95():357-370. PubMed ID: 30776506
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Principles of Spheroid Preparation for Creation of 3D Cardiac Tissue Using Biomaterial-Free Bioprinting.
    Ong CS; Pitaktong I; Hibino N
    Methods Mol Biol; 2020; 2140():183-197. PubMed ID: 32207113
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving Bioprinted Volumetric Tumor Microenvironments In Vitro.
    Li J; Parra-Cantu C; Wang Z; Zhang YS
    Trends Cancer; 2020 Sep; 6(9):745-756. PubMed ID: 32680649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mimicking tumor microenvironment by 3D bioprinting: 3D cancer modeling.
    Shukla P; Yeleswarapu S; Heinrich MA; Prakash J; Pati F
    Biofabrication; 2022 May; 14(3):. PubMed ID: 35512666
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deployable extrusion bioprinting of compartmental tumoroids with cancer associated fibroblasts for immune cell interactions.
    Mazzaglia C; Sheng Y; Rodrigues LN; Lei IM; Shields JD; Huang YYS
    Biofabrication; 2023 Jan; 15(2):. PubMed ID: 36626838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D bioprinted drug-resistant breast cancer spheroids for quantitative in situ evaluation of drug resistance.
    Hong S; Song JM
    Acta Biomater; 2022 Jan; 138():228-239. PubMed ID: 34718182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D printed
    Chen H; Cheng Y; Wang X; Wang J; Shi X; Li X; Tan W; Tan Z
    Theranostics; 2020; 10(26):12127-12143. PubMed ID: 33204333
    [No Abstract]   [Full Text] [Related]  

  • 13. Glioblastoma spheroid growth and chemotherapeutic responses in single and dual-stiffness hydrogels.
    Bruns J; Egan T; Mercier P; Zustiak SP
    Acta Biomater; 2023 Jun; 163():400-414. PubMed ID: 35659918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro lung cancer multicellular tumor spheroid formation using a microfluidic device.
    Lee SW; Hong S; Jung B; Jeong SY; Byeon JH; Jeong GS; Choi J; Hwang C
    Biotechnol Bioeng; 2019 Nov; 116(11):3041-3052. PubMed ID: 31294818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alginate-gelatin-Matrigel hydrogels enable the development and multigenerational passaging of patient-derived 3D bioprinted cancer spheroid models.
    Flores-Torres S; Peza-Chavez O; Kuasne H; Munguia-Lopez JG; Kort-Mascort J; Ferri L; Jiang T; Rajadurai CV; Park M; Sangwan V; Kinsella JM
    Biofabrication; 2021 Mar; 13(2):. PubMed ID: 33440351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Printability, Durability, Contractility and Vascular Network Formation in 3D Bioprinted Cardiac Endothelial Cells Using Alginate-Gelatin Hydrogels.
    Roche CD; Sharma P; Ashton AW; Jackson C; Xue M; Gentile C
    Front Bioeng Biotechnol; 2021; 9():636257. PubMed ID: 33748085
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering Mesoscopic 3D Tumor Models with a Self-Organizing Vascularized Matrix.
    De Lorenzi F; Hansen N; Theek B; Daware R; Motta A; Breuel S; Nasehi R; Baumeister J; Schöneberg J; Stojanović N; von Stillfried S; Vogt M; Müller-Newen G; Maurer J; Sofias AM; Lammers T; Fischer H; Kiessling F
    Adv Mater; 2024 Feb; 36(5):e2303196. PubMed ID: 37865947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A multi-cellular 3D bioprinting approach for vascularized heart tissue engineering based on HUVECs and iPSC-derived cardiomyocytes.
    Maiullari F; Costantini M; Milan M; Pace V; Chirivì M; Maiullari S; Rainer A; Baci D; Marei HE; Seliktar D; Gargioli C; Bearzi C; Rizzi R
    Sci Rep; 2018 Sep; 8(1):13532. PubMed ID: 30201959
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-time monitoring of oncolytic VSV properties in a novel in vitro microphysiological system containing 3D multicellular tumor spheroids.
    Lee KJ; Lee SW; Woo HN; Cho HM; Yu DB; Jeong SY; Joo CH; Jeong GS; Lee H
    PLoS One; 2020; 15(7):e0235356. PubMed ID: 32628693
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid 3D bioprinting of a multicellular model recapitulating pterygium microenvironment.
    Zhong Z; Wang J; Tian J; Deng X; Balayan A; Sun Y; Xiang Y; Guan J; Schimelman J; Hwang H; You S; Wu X; Ma C; Shi X; Yao E; Deng SX; Chen S
    Biomaterials; 2022 Mar; 282():121391. PubMed ID: 35101743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.