BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 32340551)

  • 1. Natural products may interfere with SARS-CoV-2 attachment to the host cell.
    Elfiky AA
    J Biomol Struct Dyn; 2021 Jun; 39(9):3194-3203. PubMed ID: 32340551
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interference of Chaga mushroom terpenoids with the attachment of SARS-CoV-2; in silico perspective.
    Elshemey WM; Elfiky AA; Ibrahim IM; Elgohary AM
    Comput Biol Med; 2022 Jun; 145():105478. PubMed ID: 35421790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. COVID-19 spike-host cell receptor GRP78 binding site prediction.
    Ibrahim IM; Abdelmalek DH; Elshahat ME; Elfiky AA
    J Infect; 2020 May; 80(5):554-562. PubMed ID: 32169481
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New progresses on cell surface protein HSPA5/BiP/GRP78 in cancers and COVID-19.
    Li T; Fu J; Cheng J; Elfiky AA; Wei C; Fu J
    Front Immunol; 2023; 14():1166680. PubMed ID: 37275848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In silico targeting of SARS-CoV-2 spike receptor-binding domain from different variants with chaga mushroom terpenoids.
    Amin FG; Elfiky AA; Nassar AM
    J Biomol Struct Dyn; 2024; 42(2):1079-1087. PubMed ID: 37042960
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of potential inhibitors against SARS-CoV-2 by targeting proteins responsible for envelope formation and virion assembly using docking based virtual screening, and pharmacokinetics approaches.
    Bhowmik D; Nandi R; Jagadeesan R; Kumar N; Prakash A; Kumar D
    Infect Genet Evol; 2020 Oct; 84():104451. PubMed ID: 32640381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stilbene-based natural compounds as promising drug candidates against COVID-19.
    Wahedi HM; Ahmad S; Abbasi SW
    J Biomol Struct Dyn; 2021 Jun; 39(9):3225-3234. PubMed ID: 32345140
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In silico drug discovery of major metabolites from spices as SARS-CoV-2 main protease inhibitors.
    Ibrahim MAA; Abdelrahman AHM; Hussien TA; Badr EAA; Mohamed TA; El-Seedi HR; Pare PW; Efferth T; Hegazy MF
    Comput Biol Med; 2020 Nov; 126():104046. PubMed ID: 33065388
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SARS-CoV-2 Spike-Heat Shock Protein A5 (GRP78) Recognition may be Related to the Immersed Human Coronaviruses.
    Elfiky AA
    Front Pharmacol; 2020; 11():577467. PubMed ID: 33362542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An
    Sinha SK; Shakya A; Prasad SK; Singh S; Gurav NS; Prasad RS; Gurav SS
    J Biomol Struct Dyn; 2021 Jun; 39(9):3244-3255. PubMed ID: 32345124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bacterial protein azurin and derived peptides as potential anti-SARS-CoV-2 agents: insights from molecular docking and molecular dynamics simulations.
    Sasidharan S; Selvaraj C; Singh SK; Dubey VK; Kumar S; Fialho AM; Saudagar P
    J Biomol Struct Dyn; 2021 Sep; 39(15):5706-5721. PubMed ID: 32619162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In silico study of azithromycin, chloroquine and hydroxychloroquine and their potential mechanisms of action against SARS-CoV-2 infection.
    Braz HLB; Silveira JAM; Marinho AD; de Moraes MEA; Moraes Filho MO; Monteiro HSA; Jorge RJB
    Int J Antimicrob Agents; 2020 Sep; 56(3):106119. PubMed ID: 32738306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An investigation into the identification of potential inhibitors of SARS-CoV-2 main protease using molecular docking study.
    Das S; Sarmah S; Lyndem S; Singha Roy A
    J Biomol Struct Dyn; 2021 Jun; 39(9):3347-3357. PubMed ID: 32362245
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SARS-CoV-2 Evolutionary Adaptation toward Host Entry and Recognition of Receptor O-Acetyl Sialylation in Virus-Host Interaction.
    Kim CH
    Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32604730
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization Rules for SARS-CoV-2 M
    Stoddard SV; Stoddard SD; Oelkers BK; Fitts K; Whalum K; Whalum K; Hemphill AD; Manikonda J; Martinez LM; Riley EG; Roof CM; Sarwar N; Thomas DM; Ulmer E; Wallace FE; Pandey P; Roy S
    Viruses; 2020 Aug; 12(9):. PubMed ID: 32859008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ebola virus glycoprotein GP1-host cell-surface HSPA5 binding site prediction.
    Elfiky AA
    Cell Stress Chaperones; 2020 May; 25(3):541-548. PubMed ID: 32291698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potential inhibitors of coronavirus 3-chymotrypsin-like protease (3CL
    Gyebi GA; Ogunro OB; Adegunloye AP; Ogunyemi OM; Afolabi SO
    J Biomol Struct Dyn; 2021 Jun; 39(9):3396-3408. PubMed ID: 32367767
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced Binding of SARS-CoV-2 Spike Protein to Receptor by Distal Polybasic Cleavage Sites.
    Qiao B; Olvera de la Cruz M
    ACS Nano; 2020 Aug; 14(8):10616-10623. PubMed ID: 32806067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeting the SARS-CoV-2 spike glycoprotein prefusion conformation: virtual screening and molecular dynamics simulations applied to the identification of potential fusion inhibitors.
    Romeo A; Iacovelli F; Falconi M
    Virus Res; 2020 Sep; 286():198068. PubMed ID: 32565126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of chymotrypsin-like protease inhibitors of SARS-CoV-2
    Khan SA; Zia K; Ashraf S; Uddin R; Ul-Haq Z
    J Biomol Struct Dyn; 2021 Apr; 39(7):2607-2616. PubMed ID: 32238094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.