BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 32340551)

  • 21. A molecular docking study revealed that synthetic peptides induced conformational changes in the structure of SARS-CoV-2 spike glycoprotein, disrupting the interaction with human ACE2 receptor.
    Souza PFN; Lopes FES; Amaral JL; Freitas CDT; Oliveira JTA
    Int J Biol Macromol; 2020 Dec; 164():66-76. PubMed ID: 32693122
    [TBL] [Abstract][Full Text] [Related]  

  • 22. SARS-CoV-2 host tropism: An in silico analysis of the main cellular factors.
    Rangel HR; Ortega JT; Maksoud S; Pujol FH; Serrano ML
    Virus Res; 2020 Nov; 289():198154. PubMed ID: 32918944
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluation and characterization of HSPA5 (GRP78) expression profiles in normal individuals and cancer patients with COVID-19.
    Fu J; Wei C; He J; Zhang L; Zhou J; Balaji KS; Shen S; Peng J; Sharma A; Fu J
    Int J Biol Sci; 2021; 17(3):897-910. PubMed ID: 33767597
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular Binding Mechanism and Pharmacology Comparative Analysis of Noscapine for Repurposing against SARS-CoV-2 Protease.
    Kumar N; Sood D; van der Spek PJ; Sharma HS; Chandra R
    J Proteome Res; 2020 Nov; 19(11):4678-4689. PubMed ID: 32786685
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In Silico Evaluation of the Effectivity of Approved Protease Inhibitors against the Main Protease of the Novel SARS-CoV-2 Virus.
    Eleftheriou P; Amanatidou D; Petrou A; Geronikaki A
    Molecules; 2020 May; 25(11):. PubMed ID: 32485894
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular docking study of potential phytochemicals and their effects on the complex of SARS-CoV2 spike protein and human ACE2.
    Basu A; Sarkar A; Maulik U
    Sci Rep; 2020 Oct; 10(1):17699. PubMed ID: 33077836
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of a Potential Peptide Inhibitor of SARS-CoV-2 Targeting its Entry into the Host Cells.
    Baig MS; Alagumuthu M; Rajpoot S; Saqib U
    Drugs R D; 2020 Sep; 20(3):161-169. PubMed ID: 32592145
    [TBL] [Abstract][Full Text] [Related]  

  • 28.
    Bhowmik A; Biswas S; Hajra S; Saha P
    Heliyon; 2021 Jan; 7(1):e05923. PubMed ID: 33458435
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Repurposing of FDA-Approved Toremifene to Treat COVID-19 by Blocking the Spike Glycoprotein and NSP14 of SARS-CoV-2.
    Martin WR; Cheng F
    J Proteome Res; 2020 Nov; 19(11):4670-4677. PubMed ID: 32907334
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Using integrated computational approaches to identify safe and rapid treatment for SARS-CoV-2.
    Al-Khafaji K; Al-Duhaidahawi D; Taskin Tok T
    J Biomol Struct Dyn; 2021 Jun; 39(9):3387-3395. PubMed ID: 32364041
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In silico prediction of potential inhibitors for the main protease of SARS-CoV-2 using molecular docking and dynamics simulation based drug-repurposing.
    Kumar Y; Singh H; Patel CN
    J Infect Public Health; 2020 Sep; 13(9):1210-1223. PubMed ID: 32561274
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Simultaneous Inhibition of SARS-CoV-2 Entry Pathways by Cyclosporine.
    Prasad K; Ahamad S; Kanipakam H; Gupta D; Kumar V
    ACS Chem Neurosci; 2021 Mar; 12(5):930-944. PubMed ID: 33606519
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular Basis of SARS-CoV-2 Infection and Rational Design of Potential Antiviral Agents: Modeling and Simulation Approaches.
    Francés-Monerris A; Hognon C; Miclot T; García-Iriepa C; Iriepa I; Terenzi A; Grandemange S; Barone G; Marazzi M; Monari A
    J Proteome Res; 2020 Nov; 19(11):4291-4315. PubMed ID: 33119313
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Neutralization of SARS-CoV-2 Spike Protein via Natural Compounds: A Multilayered High Throughput Virtual Screening Approach.
    Dhasmana A; Kashyap VK; Dhasmana S; Kotnala S; Haque S; Ashraf GM; Jaggi M; Yallapu MM; Chauhan SC
    Curr Pharm Des; 2020; 26(41):5300-5309. PubMed ID: 32867645
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Andrographolide as a potential inhibitor of SARS-CoV-2 main protease: an in silico approach.
    Enmozhi SK; Raja K; Sebastine I; Joseph J
    J Biomol Struct Dyn; 2021 Jun; 39(9):3092-3098. PubMed ID: 32329419
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structure-based drug designing for potential antiviral activity of selected natural products from Ayurveda against SARS-CoV-2 spike glycoprotein and its cellular receptor.
    Maurya VK; Kumar S; Prasad AK; Bhatt MLB; Saxena SK
    Virusdisease; 2020 Jun; 31(2):179-193. PubMed ID: 32656311
    [TBL] [Abstract][Full Text] [Related]  

  • 37.
    de Oliveira DF
    J Biomol Struct Dyn; 2023 Nov; ():1-19. PubMed ID: 37921757
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Preliminary Virtual Screening Studies to Identify GRP78 Inhibitors Which May Interfere with SARS-CoV-2 Infection.
    Palmeira A; Sousa E; Köseler A; Sabirli R; Gören T; Türkçüer İ; Kurt Ö; Pinto MM; Vasconcelos MH
    Pharmaceuticals (Basel); 2020 Jun; 13(6):. PubMed ID: 32630514
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Design of a potent anticancer lead inspired by natural products from traditional Indian medicine.
    Arya H; Yadav CS; Lin SY; Syed SB; Charles MRC; Kannadasan S; Hsieh HP; Singh SS; Gajurel PR; Coumar MS
    J Biomol Struct Dyn; 2020 Aug; 38(12):3563-3577. PubMed ID: 31526250
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Binding insight of clinically oriented drug famotidine with the identified potential target of SARS-CoV-2.
    Sen Gupta PS; Biswal S; Singha D; Rana MK
    J Biomol Struct Dyn; 2021 Sep; 39(14):5327-5333. PubMed ID: 32579065
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.