These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 32340671)
1. Fast iron speciation in seawater by catalytic Competitive Ligand Equilibration-Cathodic Stripping Voltammetry with tenfold sample size reduction. Sanvito F; Monticelli D Anal Chim Acta; 2020 May; 1113():9-17. PubMed ID: 32340671 [TBL] [Abstract][Full Text] [Related]
2. Exploring bufferless iron speciation in seawater by Competitive Ligand Equilibration-Cathodic Stripping Voltammetry: Does pH control really matter? Sanvito F; Monticelli D Talanta; 2021 Jul; 229():122300. PubMed ID: 33838784 [TBL] [Abstract][Full Text] [Related]
3. Chemical speciation of iron in seawater by cathodic stripping voltammetry with dihydroxynaphthalene. van den Berg CM Anal Chem; 2006 Jan; 78(1):156-63. PubMed ID: 16383323 [TBL] [Abstract][Full Text] [Related]
4. Assessment of accuracy and precision in speciation analysis by competitive ligand equilibration-cathodic stripping voltammetry (CLE-CSV) and application to Antarctic samples. Monticelli D; Dossi C; Castelletti A Anal Chim Acta; 2010 Aug; 675(2):116-24. PubMed ID: 20800722 [TBL] [Abstract][Full Text] [Related]
5. Miniaturization in voltammetry: ultratrace element analysis and speciation with twenty-fold sample size reduction. Monticelli D; Laglera LM; Caprara S Talanta; 2014 Oct; 128():273-7. PubMed ID: 25059160 [TBL] [Abstract][Full Text] [Related]
6. Determination of picomolar levels of iron in seawater using catalytic cathodic stripping voltammetry. Obata H; van den Berg CM Anal Chem; 2001 Jun; 73(11):2522-8. PubMed ID: 11403294 [TBL] [Abstract][Full Text] [Related]
7. Towards a zero-blank, preconcentration-free voltammetric method for iron analysis at picomolar concentrations in unbuffered seawater. Laglera LM; Caprara S; Monticelli D Talanta; 2016 Apr; 150():449-54. PubMed ID: 26838429 [TBL] [Abstract][Full Text] [Related]
8. Quantification of iron in seawater at the low picomolar range based on optimization of bromate/ammonia/dihydroxynaphtalene system by catalytic adsorptive cathodic stripping voltammetry. Laglera LM; Santos-Echeandía J; Caprara S; Monticelli D Anal Chem; 2013 Feb; 85(4):2486-92. PubMed ID: 23339679 [TBL] [Abstract][Full Text] [Related]
9. Use of a modified, high-sensitivity, anodic stripping voltammetry method for determination of zinc speciation in the North Atlantic Ocean. Jakuba RW; Moffett JW; Saito MA Anal Chim Acta; 2008 May; 614(2):143-52. PubMed ID: 18420044 [TBL] [Abstract][Full Text] [Related]
10. Ultrasensitive and Fast Voltammetric Determination of Iron in Seawater by Atmospheric Oxygen Catalysis in 500 μL Samples. Caprara S; Laglera LM; Monticelli D Anal Chem; 2015 Jun; 87(12):6357-63. PubMed ID: 26008850 [TBL] [Abstract][Full Text] [Related]
11. Iron organic speciation determination in rainwater using cathodic stripping voltammetry. Cheize M; Sarthou G; Croot PL; Bucciarelli E; Baudoux AC; Baker AR Anal Chim Acta; 2012 Jul; 736():45-54. PubMed ID: 22769004 [TBL] [Abstract][Full Text] [Related]
12. Exploratory evaluation of iron and its speciation in surface waters of Admiralty Bay, King George Island, Antarctica. Sierpinski SFD; Baquer LML; Martins CC; Grassi MT An Acad Bras Cienc; 2023; 95(suppl 3):e20211520. PubMed ID: 37585980 [TBL] [Abstract][Full Text] [Related]
13. Determination of humic substances in natural waters by cathodic stripping voltammetry of their complexes with iron. Laglera LM; Battaglia G; van den Berg CM Anal Chim Acta; 2007 Sep; 599(1):58-66. PubMed ID: 17765064 [TBL] [Abstract][Full Text] [Related]
14. Determination of the contribution of humic substances to iron complexation in seawater by catalytic cathodic stripping voltammetry. Sukekava C; Downes J; Slagter HA; Gerringa LJA; Laglera LM Talanta; 2018 Nov; 189():359-364. PubMed ID: 30086931 [TBL] [Abstract][Full Text] [Related]
15. Characterisation of iron binding ligands in seawater by reverse titration. Hawkes JA; Gledhill M; Connelly DP; Achterberg EP Anal Chim Acta; 2013 Mar; 766():53-60. PubMed ID: 23427800 [TBL] [Abstract][Full Text] [Related]
16. Determination of iodide and total iodine in estuarine waters by cathodic stripping voltammetry using a vibrating silver amalgam microwire electrode. Espada-Bellido E; Bi Z; Salaün P; van den Berg CMG Talanta; 2017 Nov; 174():165-170. PubMed ID: 28738564 [TBL] [Abstract][Full Text] [Related]
17. Metal-organic complexation in the marine environment. Luther GW; Rozan TF; Witter A; Lewis B Geochem Trans; 2001 Sep; 2(1):65. PubMed ID: 16759421 [TBL] [Abstract][Full Text] [Related]
18. Model predictions of copper speciation in coastal water compared to measurements by analytical voltammetry. Ndungu K Environ Sci Technol; 2012 Jul; 46(14):7644-52. PubMed ID: 22724636 [TBL] [Abstract][Full Text] [Related]
19. Detection of iron(III)-binding ligands originating from marine phytoplankton using cathodic stripping voltammetry. Hasegawa H; Maki T; Asano K; Ueda K; Ueda K Anal Sci; 2004 Jan; 20(1):89-93. PubMed ID: 14753263 [TBL] [Abstract][Full Text] [Related]
20. Rapid determination of picomolar titanium in seawater with catalytic cathodic stripping voltammetry. Croot PL Anal Chem; 2011 Aug; 83(16):6395-400. PubMed ID: 21761912 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]