These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 32340930)
1. A Machine Learning Enabled Wireless Intracranial Brain Deformation Sensing System. Islam S; Shah V; Gidde STR; Hutapea P; Song SH; Picone J; Kim A IEEE Trans Biomed Eng; 2020 Dec; 67(12):3521-3530. PubMed ID: 32340930 [TBL] [Abstract][Full Text] [Related]
2. A Wireless Intracranial Brain Deformation Sensing System for Blast-Induced Traumatic Brain Injury. Song S; Race NS; Kim A; Zhang T; Shi R; Ziaie B Sci Rep; 2015 Nov; 5():16959. PubMed ID: 26586273 [TBL] [Abstract][Full Text] [Related]
3. LT-FS-ID: Log-Transformed Feature Learning and Feature-Scaling-Based Machine Learning Algorithms to Predict the Singh A; Amutha J; Nagar J; Sharma S; Lee CC Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161815 [TBL] [Abstract][Full Text] [Related]
4. Heterogeneous sensing in a multifunctional soft sensor for human-robot interfaces. Kim T; Lee S; Hong T; Shin G; Kim T; Park YL Sci Robot; 2020 Dec; 5(49):. PubMed ID: 33328297 [TBL] [Abstract][Full Text] [Related]
5. A machine learning approach for real-time modelling of tissue deformation in image-guided neurosurgery. Tonutti M; Gras G; Yang GZ Artif Intell Med; 2017 Jul; 80():39-47. PubMed ID: 28750949 [TBL] [Abstract][Full Text] [Related]
7. MRI Gibbs-ringing artifact reduction by means of machine learning using convolutional neural networks. Zhang Q; Ruan G; Yang W; Liu Y; Zhao K; Feng Q; Chen W; Wu EX; Feng Y Magn Reson Med; 2019 Dec; 82(6):2133-2145. PubMed ID: 31373061 [TBL] [Abstract][Full Text] [Related]
8. Automated Calibration of RSS Fingerprinting Based Systems Using a Mobile Robot and Machine Learning. Kolakowski M Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577476 [TBL] [Abstract][Full Text] [Related]
9. Machine learning algorithms performed no better than regression models for prognostication in traumatic brain injury. Gravesteijn BY; Nieboer D; Ercole A; Lingsma HF; Nelson D; van Calster B; Steyerberg EW; J Clin Epidemiol; 2020 Jun; 122():95-107. PubMed ID: 32201256 [TBL] [Abstract][Full Text] [Related]
10. A predictive model of recreational water quality based on adaptive synthetic sampling algorithms and machine learning. Xu T; Coco G; Neale M Water Res; 2020 Jun; 177():115788. PubMed ID: 32330740 [TBL] [Abstract][Full Text] [Related]
11. Prediction of Head Movement in 360-Degree Videos Using Attention Model. Lee D; Choi M; Lee J Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34070560 [TBL] [Abstract][Full Text] [Related]
12. Fully Passive Flexible Wireless Neural Recorder for the Acquisition of Neuropotentials from a Rat Model. Liu S; Moncion C; Zhang J; Balachandar L; Kwaku D; Riera JJ; Volakis JL; Chae J ACS Sens; 2019 Dec; 4(12):3175-3185. PubMed ID: 31670508 [TBL] [Abstract][Full Text] [Related]
13. Outcome prediction of intracranial aneurysm treatment by flow diverters using machine learning. Paliwal N; Jaiswal P; Tutino VM; Shallwani H; Davies JM; Siddiqui AH; Rai R; Meng H Neurosurg Focus; 2018 Nov; 45(5):E7. PubMed ID: 30453461 [TBL] [Abstract][Full Text] [Related]
14. Tapping on the Black Box: How Is the Scoring Power of a Machine-Learning Scoring Function Dependent on the Training Set? Su M; Feng G; Liu Z; Li Y; Wang R J Chem Inf Model; 2020 Mar; 60(3):1122-1136. PubMed ID: 32085675 [TBL] [Abstract][Full Text] [Related]
15. Machine Learning Based Localization in Large-Scale Wireless Sensor Networks. Bhatti G Sensors (Basel); 2018 Nov; 18(12):. PubMed ID: 30487457 [TBL] [Abstract][Full Text] [Related]
16. A Fiber-Optic Sensor-Embedded and Machine Learning Assisted Smart Helmet for Multi-Variable Blunt Force Impact Sensing in Real Time. Zhuang Y; Han T; Yang Q; O'Malley R; Kumar A; Gerald RE; Huang J Biosensors (Basel); 2022 Dec; 12(12):. PubMed ID: 36551126 [TBL] [Abstract][Full Text] [Related]
17. A neural network-based algorithm for high-throughput characterisation of viscoelastic properties of flowing microcapsules. Lin T; Wang Z; Wang W; Sui Y Soft Matter; 2021 Apr; 17(15):4027-4039. PubMed ID: 33480936 [TBL] [Abstract][Full Text] [Related]
18. Predicting shock-induced cavitation using machine learning: implications for blast-injury models. Marsh JL; Zinnel L; Bentil SA Front Bioeng Biotechnol; 2024; 12():1268314. PubMed ID: 38380268 [TBL] [Abstract][Full Text] [Related]
19. Sensor-based machine learning for workflow detection and as key to detect expert level in laparoscopic suturing and knot-tying. Kowalewski KF; Garrow CR; Schmidt MW; Benner L; Müller-Stich BP; Nickel F Surg Endosc; 2019 Nov; 33(11):3732-3740. PubMed ID: 30790048 [TBL] [Abstract][Full Text] [Related]
20. Development and validation of machine learning prediction model based on computed tomography angiography-derived hemodynamics for rupture status of intracranial aneurysms: a Chinese multicenter study. Chen G; Lu M; Shi Z; Xia S; Ren Y; Liu Z; Liu X; Li Z; Mao L; Li XL; Zhang B; Zhang LJ; Lu GM Eur Radiol; 2020 Sep; 30(9):5170-5182. PubMed ID: 32350658 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]