These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 32341374)

  • 1. Algorithmic discovery of dynamic models from infectious disease data.
    Horrocks J; Bauch CT
    Sci Rep; 2020 Apr; 10(1):7061. PubMed ID: 32341374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ensemble-SINDy: Robust sparse model discovery in the low-data, high-noise limit, with active learning and control.
    Fasel U; Kutz JN; Brunton BW; Brunton SL
    Proc Math Phys Eng Sci; 2022 Apr; 478(2260):20210904. PubMed ID: 35450025
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SINDy-PI: a robust algorithm for parallel implicit sparse identification of nonlinear dynamics.
    Kaheman K; Kutz JN; Brunton SL
    Proc Math Phys Eng Sci; 2020 Oct; 476(2242):20200279. PubMed ID: 33214760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distilling identifiable and interpretable dynamic models from biological data.
    Massonis G; Villaverde AF; Banga JR
    PLoS Comput Biol; 2023 Oct; 19(10):e1011014. PubMed ID: 37851682
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial heterogeneity, nonlinear dynamics and chaos in infectious diseases.
    Grenfell BT; Kleczkowski A; Gilligan CA; Bolker BM
    Stat Methods Med Res; 1995 Jun; 4(2):160-83. PubMed ID: 7582203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SINDy-SA framework: enhancing nonlinear system identification with sensitivity analysis.
    Naozuka GT; Rocha HL; Silva RS; Almeida RC
    Nonlinear Dyn; 2022; 110(3):2589-2609. PubMed ID: 36060282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Revisited measles and chickenpox dynamics through orthogonal transformation.
    Kanjilal PP; Bhattacharya J
    J Theor Biol; 1999 Mar; 197(2):163-74. PubMed ID: 10074391
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sparsifying priors for Bayesian uncertainty quantification in model discovery.
    Hirsh SM; Barajas-Solano DA; Kutz JN
    R Soc Open Sci; 2022 Feb; 9(2):211823. PubMed ID: 35223066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sparse identification of Lagrangian for nonlinear dynamical systems via proximal gradient method.
    Purnomo A; Hayashibe M
    Sci Rep; 2023 May; 13(1):7919. PubMed ID: 37193704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Data-driven discovery of coordinates and governing equations.
    Champion K; Lusch B; Kutz JN; Brunton SL
    Proc Natl Acad Sci U S A; 2019 Nov; 116(45):22445-22451. PubMed ID: 31636218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling and prediction of the transmission dynamics of COVID-19 based on the SINDy-LM method.
    Jiang YX; Xiong X; Zhang S; Wang JX; Li JC; Du L
    Nonlinear Dyn; 2021; 105(3):2775-2794. PubMed ID: 34312574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sparse identification of nonlinear dynamics for model predictive control in the low-data limit.
    Kaiser E; Kutz JN; Brunton SL
    Proc Math Phys Eng Sci; 2018 Nov; 474(2219):20180335. PubMed ID: 30839858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discovering dynamic models of COVID-19 transmission.
    Liang J; Zhang X; Wang K; Tang M; Tian M
    Transbound Emerg Dis; 2022 Jul; 69(4):e64-e70. PubMed ID: 34320273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transients and attractors in epidemics.
    Bauch CT; Earn DJ
    Proc Biol Sci; 2003 Aug; 270(1524):1573-8. PubMed ID: 12908977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thoughts, beliefs and concepts concerning infectious childhood diseases of physicians practicing homeopathic, anthroposophic and conventional medicine - a qualitative study.
    Mittring-Junghans N; Holmberg C; Witt CM; Teut M
    BMC Complement Med Ther; 2021 Jan; 21(1):46. PubMed ID: 33499846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of using different types of periodic contact rate on the behaviour of infectious diseases: a simulation study.
    Moneim IA
    Comput Biol Med; 2007 Nov; 37(11):1582-90. PubMed ID: 17452036
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A nonlinear programming approach for estimation of transmission parameters in childhood infectious disease using a continuous time model.
    Word DP; Cummings DA; Burke DS; Iamsirithaworn S; Laird CD
    J R Soc Interface; 2012 Aug; 9(73):1983-97. PubMed ID: 22337634
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Age-structured effects and disease interference in childhood infections.
    Huang Y; Rohani P
    Proc Biol Sci; 2006 May; 273(1591):1229-37. PubMed ID: 16720396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational modeling of interventions and protective thresholds to prevent disease transmission in deploying populations.
    Burgess C; Peace A; Everett R; Allegri B; Garman P
    Comput Math Methods Med; 2014; 2014():785752. PubMed ID: 25009579
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recurrent outbreaks of childhood diseases revisited: the impact of isolation.
    Feng Z; Thieme HR
    Math Biosci; 1995; 128(1-2):93-130. PubMed ID: 7606147
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.