These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 32341544)

  • 21. Latrunculin-A increases outflow facility in the monkey.
    Peterson JA; Tian B; Bershadsky AD; Volberg T; Gangnon RE; Spector I; Geiger B; Kaufman PL
    Invest Ophthalmol Vis Sci; 1999 Apr; 40(5):931-41. PubMed ID: 10102290
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High-throughput cell mechanical phenotyping for label-free titration assays of cytoskeletal modifications.
    Golfier S; Rosendahl P; Mietke A; Herbig M; Guck J; Otto O
    Cytoskeleton (Hoboken); 2017 Aug; 74(8):283-296. PubMed ID: 28445605
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Analyzing cell mechanics in hematologic diseases with microfluidic biophysical flow cytometry.
    Rosenbluth MJ; Lam WA; Fletcher DA
    Lab Chip; 2008 Jul; 8(7):1062-70. PubMed ID: 18584080
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biophysical phenotyping of single cells using a differential multiconstriction microfluidic device with self-aligned 3D electrodes.
    Yang D; Zhou Y; Zhou Y; Han J; Ai Y
    Biosens Bioelectron; 2019 May; 133():16-23. PubMed ID: 30903937
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A quantitative measure for alterations in the actin cytoskeleton investigated with automated high-throughput microscopy.
    Weichsel J; Herold N; Lehmann MJ; Kräusslich HG; Schwarz US
    Cytometry A; 2010 Jan; 77(1):52-63. PubMed ID: 19899129
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of latrunculin reveal requirements for the actin cytoskeleton during secretion from mast cells.
    Pendleton A; Koffer A
    Cell Motil Cytoskeleton; 2001 Jan; 48(1):37-51. PubMed ID: 11124709
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The actin cytoskeleton regulates exocytosis of all neutrophil granule subsets.
    Jog NR; Rane MJ; Lominadze G; Luerman GC; Ward RA; McLeish KR
    Am J Physiol Cell Physiol; 2007 May; 292(5):C1690-700. PubMed ID: 17202227
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Acto-myosin drug effects and aqueous outflow function.
    Epstein DL; Rowlette LL; Roberts BC
    Invest Ophthalmol Vis Sci; 1999 Jan; 40(1):74-81. PubMed ID: 9888429
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The formation of cortical actin arrays in human trabecular meshwork cells in response to cytoskeletal disruption.
    Murphy KC; Morgan JT; Wood JA; Sadeli A; Murphy CJ; Russell P
    Exp Cell Res; 2014 Oct; 328(1):164-171. PubMed ID: 24992043
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Latrunculins--novel marine macrolides that disrupt microfilament organization and affect cell growth: I. Comparison with cytochalasin D.
    Spector I; Shochet NR; Blasberger D; Kashman Y
    Cell Motil Cytoskeleton; 1989; 13(3):127-44. PubMed ID: 2776221
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Deformation of leukaemia cell lines in hyperbolic microchannels: investigating the role of shear and extensional components.
    Piergiovanni M; Galli V; Holzner G; Stavrakis S; DeMello A; Dubini G
    Lab Chip; 2020 Jul; 20(14):2539-2548. PubMed ID: 32567621
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microfluidic impedance flow cytometry enabling high-throughput single-cell electrical property characterization.
    Chen J; Xue C; Zhao Y; Chen D; Wu MH; Wang J
    Int J Mol Sci; 2015 Apr; 16(5):9804-30. PubMed ID: 25938973
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterizing Cellular Biophysical Responses to Stress by Relating Density, Deformability, and Size.
    Byun S; Hecht VC; Manalis SR
    Biophys J; 2015 Oct; 109(8):1565-73. PubMed ID: 26488647
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A system for the high-throughput measurement of the shear modulus distribution of human red blood cells.
    Saadat A; Huyke DA; Oyarzun DI; Escobar PV; Øvreeide IH; Shaqfeh ESG; Santiago JG
    Lab Chip; 2020 Aug; 20(16):2927-2936. PubMed ID: 32648561
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Framework for morphometric classification of cells in imaging flow cytometry.
    Gopakumar G; Jagannadh VK; Gorthi SS; Subrahmanyam GR
    J Microsc; 2016 Mar; 261(3):307-19. PubMed ID: 26469709
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The promotive effect of latrunculin B on maize root gravitropism is concentration dependent.
    Blancaflor EB; Hou GC; Mohamalawari DR
    Adv Space Res; 2003; 31(10):2215-20. PubMed ID: 14686435
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inertial Multi-Force Deformability Cytometry for High-Throughput, High-Accuracy, and High-Applicability Tumor Cell Mechanotyping.
    Chen Y; Ni C; Jiang L; Ni Z; Xiang N
    Small; 2024 Feb; 20(7):e2303962. PubMed ID: 37789502
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Continuous microfluidic 3D focusing enabling microflow cytometry for single-cell analysis.
    Yan S; Yuan D
    Talanta; 2021 Jan; 221():121401. PubMed ID: 33076055
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantitative Deformability Cytometry: Rapid, Calibrated Measurements of Cell Mechanical Properties.
    Nyberg KD; Hu KH; Kleinman SH; Khismatullin DB; Butte MJ; Rowat AC
    Biophys J; 2017 Oct; 113(7):1574-1584. PubMed ID: 28978449
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cell cycle-dependence of HL-60 cell deformability.
    Tsai MA; Waugh RE; Keng PC
    Biophys J; 1996 Apr; 70(4):2023-9. PubMed ID: 8785361
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.