BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 3234180)

  • 21. Membrane architecture as a function of lens fibre maturation: a freeze fracture and scanning electron microscopic study in the human lens.
    Vrensen G; Van Marle J; Van Veen H; Willekens B
    Exp Eye Res; 1992 Mar; 54(3):433-46. PubMed ID: 1521571
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Morgagnian and Brunescens cataract morphology studied with with SEM and TEM.
    Jongebloed WL; Kalicharan D; Los LI; Worst JG
    Eur J Morphol; 1993; 31(1-2):97-102. PubMed ID: 8398567
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biomicroscopy and scanning electron microscopy of early opacities in the aging human lens.
    Vrensen G; Willekens B
    Invest Ophthalmol Vis Sci; 1990 Aug; 31(8):1582-91. PubMed ID: 2387688
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lensfibre degeneration at cataract lenses. A LM, SEM and TEM investigation.
    Kalicharan D; Jongebloed WL; Worst JG
    Doc Ophthalmol; 1993; 85(1):77-85. PubMed ID: 8181429
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Degeneration and transdifferentiation of human lens epithelial cells in nuclear and anterior polar cataracts.
    Joo CK; Lee EH; Kim JC; Kim YH; Lee JH; Kim JT; Chung KH; Kim J
    J Cataract Refract Surg; 1999 May; 25(5):652-8. PubMed ID: 10330640
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ultrastructure of UVR-B-induced cataract and repair visualized with electron microscopy.
    Meyer LM; Wegener AR; Holz FG; Kronschläger M; Bergmanson JP; Soderberg PG
    Acta Ophthalmol; 2014 Nov; 92(7):635-43. PubMed ID: 24666994
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A note on the pseudo-exfoliation fibrils.
    Davanger M
    Acta Ophthalmol (Copenh); 1978 Feb; 56(1):114-20. PubMed ID: 580331
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Diabetic cataracts in the rhesus monkey lens.
    Farnsworth PN; Burke PA; Wagner BJ; Fu SC; Regan TJ
    Metab Pediatr Ophthalmol; 1980; 4(1):31-42. PubMed ID: 7442342
    [No Abstract]   [Full Text] [Related]  

  • 29. [A structural study of crystallins in the normal and cataractous crystalline lens by x-ray diffraction].
    Krivandin AV; L'vov IuM; Ostrovskiĭ MA; Fedorovich IB; Feĭgin LA
    Oftalmol Zh; 1989; (6):365-6. PubMed ID: 2622606
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biochemical and structural features of chick lens gap junctions.
    Kuszak JR; Alcalá J; Maisel H
    Exp Eye Res; 1981 Aug; 33(2):157-66. PubMed ID: 7274350
    [No Abstract]   [Full Text] [Related]  

  • 31. Comparative morphological study of the normal human lens and the cataract by scanning electron microscopy.
    Canals M; Costa-Vila J; Potau JM; Ruano-Gil D
    Ital J Anat Embryol; 1995; 100 Suppl 1():213-7. PubMed ID: 11322295
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analysis of lipid peroxidation and electron microscopic survey of maturation stages during human cataractogenesis: pharmacokinetic assay of Can-C N-acetylcarnosine prodrug lubricant eye drops for cataract prevention.
    Babizhayev MA
    Drugs R D; 2005; 6(6):345-69. PubMed ID: 16274259
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Morphologic characteristics and chemical composition of Christmas tree cataract.
    Shun-Shin GA; Vrensen GF; Brown NP; Willekens B; Smeets MH; Bron AJ
    Invest Ophthalmol Vis Sci; 1993 Dec; 34(13):3489-96. PubMed ID: 8258504
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Conformational changes in soluble lens proteins during the development of senile nuclear cataract.
    McNamara MK; Augusteyn RC
    Curr Eye Res; 1984 Apr; 3(4):571-83. PubMed ID: 6713956
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Aging of the human lens and the mechanisms of the senile cataract formation--about structural lens crystallin].
    Yamamoto K; Fujiwara H; Nishikiori J; Ueno S; Nishikiori T; Shinji K; Yamamoto K; Tsuda K; Kurimoto R; Goto S; Kono M; Hanafusa M; Nakata K; Ohe S; Shin T
    Nippon Ganka Gakkai Zasshi; 1982; 86(11):1859-92. PubMed ID: 7168399
    [No Abstract]   [Full Text] [Related]  

  • 36. DeltaFosB-induced cataract.
    Kelz MB; Kuszak JR; Yang Y; Ma W; Steffen C; Al-Ghoul K; Zhang YJ; Chen J; Nestler EJ; Spector A
    Invest Ophthalmol Vis Sci; 2000 Oct; 41(11):3523-38. PubMed ID: 11006248
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A correlated study of metabolic cell communication and gap junction distribution in the adult frog lens.
    Prescott A; Duncan G; Van Marle J; Vrensen G
    Exp Eye Res; 1994 Jun; 58(6):737-46. PubMed ID: 7925713
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Maturation of fiber membranes in the human eye lens. Ultrastructural and Raman microspectroscopic observations.
    Vrensen GF; Duindam HJ
    Ophthalmic Res; 1995; 27 Suppl 1():78-85. PubMed ID: 8577466
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Formation of a 55 000-weight cross-linked beta crystallin dimer in the Ca2+-treated lens. A model for cataract.
    Lorand L; Conrad SM; Velasco PT
    Biochemistry; 1985 Mar; 24(6):1525-31. PubMed ID: 3986192
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Studies using human lenses from a family displaying hereditary congenital cataracts.
    Russell P; Uga S; Zigler JS; Kaiser-Kupfer M; Kuwabara T
    Vision Res; 1981; 21(1):169-72. PubMed ID: 6791375
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.