BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 32341845)

  • 1. Large-scale label-free single-cell analysis of paramylon in
    Hiramatsu K; Yamada K; Lindley M; Suzuki K; Goda K
    Biomed Opt Express; 2020 Apr; 11(4):1752-1759. PubMed ID: 32341845
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visualizing wax ester fermentation in single
    Iwasaki K; Kaneko A; Tanaka Y; Ishikawa T; Noothalapati H; Yamamoto T
    Biotechnol Biofuels; 2019; 12():128. PubMed ID: 31139258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation and Characterization of
    Rubiyatno ; Mori K; Inoue D; Kim S; Yu J; Lee T; Ike M; Toyama T
    Microorganisms; 2021 Jul; 9(7):. PubMed ID: 34361931
    [No Abstract]   [Full Text] [Related]  

  • 4. Application of electrical treatment on Euglena gracilis for increasing paramylon production.
    Kim JY; Oh JJ; Kim DH; Kim HS; Lee C; Park J; Choi YE
    Appl Microbiol Biotechnol; 2021 Feb; 105(3):1031-1039. PubMed ID: 33415369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mixotrophic Cultivation Optimization of Microalga
    Fan P; Li Y; Deng R; Zhu F; Cheng F; Song G; Mi W; Bi Y
    Mar Drugs; 2022 Aug; 20(8):. PubMed ID: 36005522
    [No Abstract]   [Full Text] [Related]  

  • 6. Isolating Single
    Ota N; Yonamine Y; Asai T; Yalikun Y; Ito T; Ozeki Y; Hoshino Y; Tanaka Y
    Anal Chem; 2019 Aug; 91(15):9631-9639. PubMed ID: 31282650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancement of photosynthetic capacity in Euglena gracilis by expression of cyanobacterial fructose-1,6-/sedoheptulose-1,7-bisphosphatase leads to increases in biomass and wax ester production.
    Ogawa T; Tamoi M; Kimura A; Mine A; Sakuyama H; Yoshida E; Maruta T; Suzuki K; Ishikawa T; Shigeoka S
    Biotechnol Biofuels; 2015; 8():80. PubMed ID: 26056534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gravity sedimentation of eukaryotic algae Euglena gracilis accelerated by ethanol cultivation.
    Takahashi Y; Shimamoto K; Toyokawa C; Suzuki K; Osanai T
    Appl Microbiol Biotechnol; 2023 May; 107(9):3021-3032. PubMed ID: 36941437
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-throughput label-free image cytometry and image-based classification of live Euglena gracilis.
    Lei C; Ito T; Ugawa M; Nozawa T; Iwata O; Maki M; Okada G; Kobayashi H; Sun X; Tiamsak P; Tsumura N; Suzuki K; Di Carlo D; Ozeki Y; Goda K
    Biomed Opt Express; 2016 Jul; 7(7):2703-8. PubMed ID: 27446699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid and Accurate Quantification of Paramylon Produced from
    Kim JY; Oh JJ; Kim DH; Park J; Kim HS; Choi YE
    J Agric Food Chem; 2020 Jan; 68(1):402-408. PubMed ID: 31809034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of growth and paramylon production of Euglena gracilis by co-cultivation with Pseudoalteromonas sp. MEBiC 03485.
    Jeon MS; Oh JJ; Kim JY; Han SI; Sim SJ; Choi YE
    Bioresour Technol; 2019 Sep; 288():121513. PubMed ID: 31146078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolomic analysis and pathway profiling of paramylon production in Euglena gracilis grown on different carbon sources.
    Huang Y; Wan X; Zhao Z; Liu H; Wen Y; Wu W; Ge X; Zhao C
    Int J Biol Macromol; 2023 Aug; 246():125661. PubMed ID: 37399871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fed-batch cultivation of Euglena gracilis for the high-yield production and GPC-assisted molecular weight determination of paramylon.
    Fukuda M; Kinkawa M; Hayashi M
    Biosci Biotechnol Biochem; 2024 Jan; 88(2):206-211. PubMed ID: 37974047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anti-fibrotic activity of
    Nakashima A; Sugimoto R; Suzuki K; Shirakata Y; Hashiguchi T; Yoshida C; Nakano Y
    Food Sci Nutr; 2019 Jan; 7(1):139-147. PubMed ID: 30680167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative assessment of the Euglena gracilis var. saccharophila variant strain as a producer of the β-1,3-glucan paramylon under varying light conditions.
    Sun A; Hasan MT; Hobba G; Nevalainen H; Te'o J
    J Phycol; 2018 Aug; 54(4):529-538. PubMed ID: 29889303
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient selective breeding of live oil-rich Euglena gracilis with fluorescence-activated cell sorting.
    Yamada K; Suzuki H; Takeuchi T; Kazama Y; Mitra S; Abe T; Goda K; Suzuki K; Iwata O
    Sci Rep; 2016 May; 6():26327. PubMed ID: 27212384
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global Metabolomics Reveals That
    Ouyang Y; Chen S; Zhao L; Song Y; Lei A; He J; Wang J
    Front Bioeng Biotechnol; 2021; 9():652021. PubMed ID: 33869160
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Throughput Accurate Single-Cell Screening of Euglena gracilis with Fluorescence-Assisted Optofluidic Time-Stretch Microscopy.
    Guo B; Lei C; Ito T; Jiang Y; Ozeki Y; Goda K
    PLoS One; 2016; 11(11):e0166214. PubMed ID: 27846239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of screening strategies for the identification of paramylon-degrading enzymes.
    Gissibl A; Care A; Sun A; Hobba G; Nevalainen H; Sunna A
    J Ind Microbiol Biotechnol; 2019 Jun; 46(6):769-781. PubMed ID: 30806871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Morphometric Analysis of Paramylon Particles Produced by Euglena gracilis EOD-1 Using FIB/SEM Tomography.
    Anraku M; Iohara D; Takada H; Awane T; Kawashima J; Takahashi M; Hirayama F
    Chem Pharm Bull (Tokyo); 2020 Jan; 68(1):100-102. PubMed ID: 31666462
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.