BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 32341856)

  • 1. Determination of refractive index, size, and solid content of monodisperse polystyrene microsphere suspensions for the characterization of optical phantoms.
    Naglič P; Zelinskyi Y; Likar B; Bürmen M
    Biomed Opt Express; 2020 Apr; 11(4):1901-1918. PubMed ID: 32341856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determining the unique refractive index properties of solid polystyrene aerosol using broadband Mie scattering from optically trapped beads.
    Jones SH; King MD; Ward AD
    Phys Chem Chem Phys; 2013 Dec; 15(47):20735-41. PubMed ID: 24196002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation of solid phantoms with defined scattering and absorption properties for optical tomography.
    Sukowski U; Schubert F; Grosenick D; Rinneberg H
    Phys Med Biol; 1996 Sep; 41(9):1823-44. PubMed ID: 8884914
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of complex refractive index of polydisperse particulate systems from multiple-scattered ultraviolet-visible-near-infrared measurements.
    Velazco-Roa MA; Thennadil SN
    Appl Opt; 2007 Jun; 46(18):3730-5. PubMed ID: 17538669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extinction spectra of suspensions of microspheres: determination of the spectral refractive index and particle size distribution with nanometer accuracy.
    Gienger J; Bär M; Neukammer J
    Appl Opt; 2018 Jan; 57(2):344-355. PubMed ID: 29328184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using Mie Scattering to Determine the Wavelength-Dependent Refractive Index of Polystyrene Beads with Changing Temperature.
    McGrory MR; King MD; Ward AD
    J Phys Chem A; 2020 Nov; 124(46):9617-9625. PubMed ID: 33164512
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of Mie theory for enhanced size determination of microparticles using optical particle counters.
    Müller D; Glöckler F; Kienle A
    Appl Opt; 2019 Jun; 58(17):4575-4584. PubMed ID: 31251277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement of Scattering and Absorption Cross Sections of Dyed Microspheres.
    Gaigalas AK; Choquette S; Zhang YZ
    J Res Natl Inst Stand Technol; 2013; 118():15-28. PubMed ID: 26401422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultraviolet refractometry using field-based light scattering spectroscopy.
    Fu D; Choi W; Sung Y; Oh S; Yaqoob Z; Park Y; Dasari RR; Feld MS
    Opt Express; 2009 Oct; 17(21):18878-86. PubMed ID: 20372622
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Merging Mie solutions and the radiative transport equation to measure optical properties of scattering particles in optical phantoms.
    Baez-Castillo L; Ortiz-Rascón E; Bruce NC; Garduño-Mejía J; Carrillo-Torres RC; Álvarez-Ramos ME
    Appl Opt; 2020 Nov; 59(33):10591-10598. PubMed ID: 33361994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectrophotometric determination of turbid optical parameters without using an integrating sphere.
    Liang X; Li M; Lu JQ; Huang C; Feng Y; Sa Y; Ding J; Hu XH
    Appl Opt; 2016 Mar; 55(8):2079-85. PubMed ID: 26974805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement of Scattering and Absorption Cross Sections of Microspheres for Wavelengths between 240 nm and 800 nm.
    Gaigalas AK; Wang L; Choquette S
    J Res Natl Inst Stand Technol; 2013; 118():1-14. PubMed ID: 26401421
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Validating the assumption to the interference approximation by use of measurements of absorption efficiency and hindered scattering in dense suspensions.
    Huang Y; Sevick-Muraca EM
    Appl Opt; 2004 Feb; 43(4):814-9. PubMed ID: 14960075
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurements of extrinsic fluorescence in Intralipid and polystyrene microspheres.
    Du Le VN; Nie Z; Hayward JE; Farrell TJ; Fang Q
    Biomed Opt Express; 2014 Aug; 5(8):2726-35. PubMed ID: 25136497
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement of refractive index by nanoparticle tracking analysis reveals heterogeneity in extracellular vesicles.
    Gardiner C; Shaw M; Hole P; Smith J; Tannetta D; Redman CW; Sargent IL
    J Extracell Vesicles; 2014; 3():25361. PubMed ID: 25425324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical properties of PlatSil SiliGlass tissue-mimicking phantoms.
    Naglič P; Zelinskyi Y; Rogelj L; Stergar J; Milanič M; Novak J; Kumperščak B; Bürmen M
    Biomed Opt Express; 2020 Jul; 11(7):3753-3768. PubMed ID: 33014564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of optical parameters of polystyrene spheres in dense aqueous suspensions.
    Xia H; Miao C; Cheng J; Tao S; Pang R; Wu X
    Appl Opt; 2012 Jun; 51(16):3263-8. PubMed ID: 22695559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Total attenuation coefficients and scattering phase functions of tissues and phantom materials at 633 nm.
    Flock ST; Wilson BC; Patterson MS
    Med Phys; 1987; 14(5):835-41. PubMed ID: 3683313
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Particle Size and Number Density Online Analysis for Particle Suspension with Polarization-Differentiation Elastic Light Scattering Spectroscopy].
    Chen WK; Fang H
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Mar; 36(3):770-4. PubMed ID: 27400522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurements of wavelength dependent scattering and backscattering coefficients by low-coherence spectroscopy.
    Bosschaart N; Faber DJ; van Leeuwen TG; Aalders MC
    J Biomed Opt; 2011 Mar; 16(3):030503. PubMed ID: 21456858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.