BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 32342066)

  • 1. Near infrared spectroscopic assessment of loosely and tightly bound cortical bone water.
    Ailavajhala R; Querido W; Rajapakse CS; Pleshko N
    Analyst; 2020 May; 145(10):3713-3724. PubMed ID: 32342066
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Raman Biomarkers Are Associated with Cyclic Fatigue Life of Human Allograft Cortical Bone.
    Du JY; Flanagan CD; Bensusan JS; Knusel KD; Akkus O; Rimnac CM
    J Bone Joint Surg Am; 2019 Sep; 101(17):e85. PubMed ID: 31483404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Raman spectral classification of mineral- and collagen-bound water's associations to elastic and post-yield mechanical properties of cortical bone.
    Unal M; Akkus O
    Bone; 2015 Dec; 81():315-326. PubMed ID: 26211992
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interrelationships between electrical, mechanical and hydration properties of cortical bone.
    Unal M; Cingoz F; Bagcioglu C; Sozer Y; Akkus O
    J Mech Behav Biomed Mater; 2018 Jan; 77():12-23. PubMed ID: 28888142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Near infrared spectroscopic imaging assessment of cartilage composition: Validation with mid infrared imaging spectroscopy.
    Palukuru UP; Hanifi A; McGoverin CM; Devlin S; Lelkes PI; Pleshko N
    Anal Chim Acta; 2016 Jul; 926():79-87. PubMed ID: 27216396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of different protocols for demineralization of cortical bone.
    Pang S; Su FY; Green A; Salim J; McKittrick J; Jasiuk I
    Sci Rep; 2021 Mar; 11(1):7012. PubMed ID: 33782429
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular spectroscopic identification of the water compartments in bone.
    Unal M; Yang S; Akkus O
    Bone; 2014 Oct; 67():228-36. PubMed ID: 25065717
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel Raman Spectroscopic Biomarkers Indicate That Postyield Damage Denatures Bone's Collagen.
    Unal M; Jung H; Akkus O
    J Bone Miner Res; 2016 May; 31(5):1015-25. PubMed ID: 26678707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing Water Mobility in Human Dentine with Neutron Spectroscopy.
    Lauritsen AK; Pereira JEM; Juranyi F; Bordallo HN; Larsen L; Benetti AR
    J Dent Res; 2018 Aug; 97(9):1017-1022. PubMed ID: 29578824
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cortical bone material / compositional properties in growing children and young adults aged 1.5-23 years, as a function of gender, age, metabolic activity, and growth spurt.
    Gamsjaeger S; Rauch F; Glorieux FH; Paschalis EP
    Bone; 2022 Dec; 165():116548. PubMed ID: 36122648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Induction and analysis for NIR features of frequently-used mineral traditional Chinese medicines].
    Chen L; Yuan MY; Chen KL
    Zhongguo Zhong Yao Za Zhi; 2016 Oct; 41(19):3528-3536. PubMed ID: 28925144
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-destructive NIR spectral imaging assessment of bone water: Comparison to MRI measurements.
    Rajapakse CS; Padalkar MV; Yang HJ; Ispiryan M; Pleshko N
    Bone; 2017 Oct; 103():116-124. PubMed ID: 28666972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Raman spectral markers of collagen denaturation and hydration in human cortical bone tissue are affected by radiation sterilization and high cycle fatigue damage.
    Flanagan CD; Unal M; Akkus O; Rimnac CM
    J Mech Behav Biomed Mater; 2017 Nov; 75():314-321. PubMed ID: 28772165
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Components of the carbonyl stretching band in the infrared spectra of hydrated 1,2-diacylglycerolipid bilayers: a reevaluation.
    Lewis RN; McElhaney RN; Pohle W; Mantsch HH
    Biophys J; 1994 Dec; 67(6):2367-75. PubMed ID: 7696476
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Raman spectroscopic investigation on the molecular structure of apatite and collagen in osteoporotic cortical bone.
    Pezzotti G; Rondinella A; Marin E; Zhu W; Aldini NN; Ulian G; Valdrè G
    J Mech Behav Biomed Mater; 2017 Jan; 65():264-273. PubMed ID: 27608424
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resolving the Near-Infrared Spectrum of Articular Cartilage.
    Afara IO; Oloyede A
    Cartilage; 2021 Dec; 13(1_suppl):729S-737S. PubMed ID: 34643470
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Applying Full Spectrum Analysis to a Raman Spectroscopic Assessment of Fracture Toughness of Human Cortical Bone.
    Makowski AJ; Granke M; Ayala OD; Uppuganti S; Mahadevan-Jansen A; Nyman JS
    Appl Spectrosc; 2017 Oct; 71(10):2385-2394. PubMed ID: 28708001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly ordered interstitial water observed in bone by nuclear magnetic resonance.
    Wilson EE; Awonusi A; Morris MD; Kohn DH; Tecklenburg MM; Beck LW
    J Bone Miner Res; 2005 Apr; 20(4):625-34. PubMed ID: 15765182
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Near-infrared spectroscopic study of selected hydrated hydroxylated phosphates.
    Frost RL; Erickson KL
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Jan; 61(1-2):45-50. PubMed ID: 15556419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Environmentally-Controlled Near Infrared Spectroscopic Imaging of Bone Water.
    Ailavajhala R; Oswald J; Rajapakse CS; Pleshko N
    Sci Rep; 2019 Jul; 9(1):10199. PubMed ID: 31308386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.