BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 32342130)

  • 1. Electrochemiluminescence reaction pathways in nanofluidic devices.
    Voci S; Al-Kutubi H; Rassaei L; Mathwig K; Sojic N
    Anal Bioanal Chem; 2020 Jul; 412(17):4067-4075. PubMed ID: 32342130
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced annihilation electrochemiluminescence by nanofluidic confinement.
    Al-Kutubi H; Voci S; Rassaei L; Sojic N; Mathwig K
    Chem Sci; 2018 Dec; 9(48):8946-8950. PubMed ID: 30647886
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On-demand in situ generation of oxygen in a nanofluidic embedded planar microband electrochemical reactor.
    Xu W; Foster E; Ma C; Bohn PW
    Microfluid Nanofluidics; 2015 Nov; 19(5):1181-1189. PubMed ID: 30319319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scanning electrochemical microscopy study of ion annihilation electrogenerated chemiluminescence of rubrene and [Ru(bpy)3]2+.
    Rodríguez-López J; Shen M; Nepomnyashchii AB; Bard AJ
    J Am Chem Soc; 2012 Jun; 134(22):9240-50. PubMed ID: 22587623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single Cell Electrochemiluminescence Imaging: From the Proof-of-Concept to Disposable Device-Based Analysis.
    Valenti G; Scarabino S; Goudeau B; Lesch A; Jović M; Villani E; Sentic M; Rapino S; Arbault S; Paolucci F; Sojic N
    J Am Chem Soc; 2017 Nov; 139(46):16830-16837. PubMed ID: 29064235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-Dimensional Electrochemiluminescence: Light Emission Confined at the Oil-Water Interface in Emulsions Stabilized by Luminophore-Grafted Microgels.
    Bois R; Scarabino S; Ravaine V; Sojic N
    Langmuir; 2017 Jul; 33(29):7231-7238. PubMed ID: 28669191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anodic, cathodic, and annihilation electrochemiluminescence emissions from hydrophilic conjugated polymer dots in aqueous medium.
    Dai R; Wu F; Xu H; Chi Y
    ACS Appl Mater Interfaces; 2015 Jul; 7(28):15160-7. PubMed ID: 26115552
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Grand Avenue to Au Nanocluster Electrochemiluminescence.
    Hesari M; Ding Z
    Acc Chem Res; 2017 Feb; 50(2):218-230. PubMed ID: 28080028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Why were alternating-current-driven electrochemiluminescence properties from Ru(bpy)3(2+) dramatically improved by the addition of titanium dioxide nanoparticles?
    Tsuneyasu S; Ichihara K; Nakamura K; Kobayashi N
    Phys Chem Chem Phys; 2016 Jun; 18(24):16317-24. PubMed ID: 27253475
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic Interplay between Transport and Reaction Kinetics of Luminophores on the Operation of AC-Driven Electrochemiluminescence Devices.
    Lee JI; Kang D; Kong SH; Gim H; Shin IS; Kim J; Kang MS
    ACS Appl Mater Interfaces; 2018 Dec; 10(48):41562-41569. PubMed ID: 30398048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new approach for the simulation of electrochemiluminescence (ECL).
    Klymenko OV; Svir I; Amatore C
    Chemphyschem; 2013 Jul; 14(10):2237-50. PubMed ID: 23616388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemiluminescence Imaging for Bioanalysis.
    Zhang J; Arbault S; Sojic N; Jiang D
    Annu Rev Anal Chem (Palo Alto Calif); 2019 Jun; 12(1):275-295. PubMed ID: 30939032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemiluminescence of ruthenium(II) complexes functionalized with crown ether pendants and effects of cation binding.
    Li MJ; Chen Z; Zhu N; Yam VW; Zu Y
    Inorg Chem; 2008 Feb; 47(3):1218-23. PubMed ID: 18186629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced Electrochemiluminescence from a Stoichiometric Ruthenium(II)-Iridium(III) Complex Soft Salt.
    Swanick KN; Sandroni M; Ding Z; Zysman-Colman E
    Chemistry; 2015 May; 21(20):7435-40. PubMed ID: 25735656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly Efficient Electrochemiluminescence of Cyanovinylene-Contained Polymer Dots in Aqueous Medium and Its Application in Imaging Analysis.
    Feng Y; Wang N; Ju H
    Anal Chem; 2018 Jan; 90(2):1202-1208. PubMed ID: 29265809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using stannous ion as an excellent inorganic ECL coreactant for tris(2,2'-bipyridyl) ruthenium(II).
    Zheng L; Wang B; Chi Y; Song S; Fan C; Chen G
    Dalton Trans; 2012 Feb; 41(5):1630-4. PubMed ID: 22147074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Miniaturized analytical instrumentation for electrochemiluminescence assays: a spectrometer and a photodiode-based device.
    Neves MM; Bobes-Limenes P; Pérez-Junquera A; González-García MB; Hernández-Santos D; Fanjul-Bolado P
    Anal Bioanal Chem; 2016 Oct; 408(25):7121-7. PubMed ID: 27299777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coreactant enhanced anodic electrochemiluminescence of CdTe quantum dots at low potential for sensitive biosensing amplified by enzymatic cycle.
    Liu X; Ju H
    Anal Chem; 2008 Jul; 80(14):5377-82. PubMed ID: 18522432
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antagonistic effects leading to turn-on electrochemiluminescence in thermoresponsive hydrogel films.
    Li H; Sentic M; Ravaine V; Sojic N
    Phys Chem Chem Phys; 2016 Dec; 18(48):32697-32702. PubMed ID: 27731440
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced electrochemiluminescence of RuSi nanoparticles for ultrasensitive detection of ochratoxin A by energy transfer with CdTe quantum dots.
    Wang Q; Chen M; Zhang H; Wen W; Zhang X; Wang S
    Biosens Bioelectron; 2016 May; 79():561-7. PubMed ID: 26749097
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.