BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

349 related articles for article (PubMed ID: 32342258)

  • 1. pix2xray: converting RGB images into X-rays using generative adversarial networks.
    Haiderbhai M; Ledesma S; Lee SC; Seibold M; Fürnstahl P; Navab N; Fallavollita P
    Int J Comput Assist Radiol Surg; 2020 Jun; 15(6):973-980. PubMed ID: 32342258
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generating X-ray Images from Point Clouds Using Conditional Generative Adversarial Networks.
    Haiderbhai M; Ledesma S; Navab N; Fallavollita P
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():1588-1591. PubMed ID: 33018297
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pix2pix Conditional Generative Adversarial Networks for Scheimpflug Camera Color-Coded Corneal Tomography Image Generation.
    Abdelmotaal H; Abdou AA; Omar AF; El-Sebaity DM; Abdelazeem K
    Transl Vis Sci Technol; 2021 Jun; 10(7):21. PubMed ID: 34132759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Image Translation by Ad CycleGAN for COVID-19 X-Ray Images: A New Approach for Controllable GAN.
    Liang Z; Huang JX; Antani S
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36559994
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Learning from adversarial medical images for X-ray breast mass segmentation.
    Shen T; Gou C; Wang FY; He Z; Chen W
    Comput Methods Programs Biomed; 2019 Oct; 180():105012. PubMed ID: 31421601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Retinal image synthesis from multiple-landmarks input with generative adversarial networks.
    Yu Z; Xiang Q; Meng J; Kou C; Ren Q; Lu Y
    Biomed Eng Online; 2019 May; 18(1):62. PubMed ID: 31113438
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A deep learning generative model approach for image synthesis of plant leaves.
    Benfenati A; Bolzi D; Causin P; Oberti R
    PLoS One; 2022; 17(11):e0276972. PubMed ID: 36399435
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A modality conversion approach to MV-DRs and KV-DRRs registration using information bottlenecked conditional generative adversarial network.
    Liu C; Lu Z; Ma L; Wang L; Jin X; Si W
    Med Phys; 2019 Oct; 46(10):4575-4587. PubMed ID: 31420963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D conditional generative adversarial networks for high-quality PET image estimation at low dose.
    Wang Y; Yu B; Wang L; Zu C; Lalush DS; Lin W; Wu X; Zhou J; Shen D; Zhou L
    Neuroimage; 2018 Jul; 174():550-562. PubMed ID: 29571715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploration of Semantic Label Decomposition and Dataset Size in Semantic Indoor Scenes Synthesis via Optimized Residual Generative Adversarial Networks.
    Ibrahem H; Salem A; Kang HS
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36366007
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MetalGAN: Multi-domain label-less image synthesis using cGANs and meta-learning.
    Fontanini T; Iotti E; Donati L; Prati A
    Neural Netw; 2020 Nov; 131():185-200. PubMed ID: 32801058
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Image manipulation with natural language using Two-sided Attentive Conditional Generative Adversarial Network.
    Zhu D; Mogadala A; Klakow D
    Neural Netw; 2021 Apr; 136():207-217. PubMed ID: 33008695
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conditional generative adversarial network for 3D rigid-body motion correction in MRI.
    Johnson PM; Drangova M
    Magn Reson Med; 2019 Sep; 82(3):901-910. PubMed ID: 31006909
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Road Surface Crack Detection Method Based on Conditional Generative Adversarial Networks.
    Kyslytsyna A; Xia K; Kislitsyn A; Abd El Kader I; Wu Y
    Sensors (Basel); 2021 Nov; 21(21):. PubMed ID: 34770711
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generative approach for data augmentation for deep learning-based bone surface segmentation from ultrasound images.
    Zaman A; Park SH; Bang H; Park CW; Park I; Joung S
    Int J Comput Assist Radiol Surg; 2020 Jun; 15(6):931-941. PubMed ID: 32399586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Data augmentation using generative adversarial networks (CycleGAN) to improve generalizability in CT segmentation tasks.
    Sandfort V; Yan K; Pickhardt PJ; Summers RM
    Sci Rep; 2019 Nov; 9(1):16884. PubMed ID: 31729403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conditional Generative Adversarial Networks for Data Augmentation of a Neonatal Image Dataset.
    Lyra S; Mustafa A; Rixen J; Borik S; Lueken M; Leonhardt S
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generative adversarial networks with decoder-encoder output noises.
    Zhong G; Gao W; Liu Y; Yang Y; Wang DH; Huang K
    Neural Netw; 2020 Jul; 127():19-28. PubMed ID: 32315932
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesizing Depth Hand Images with GANs and Style Transfer for Hand Pose Estimation.
    He W; Xie Z; Li Y; Wang X; Cai W
    Sensors (Basel); 2019 Jul; 19(13):. PubMed ID: 31266251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A patient-independent CT intensity matching method using conditional generative adversarial networks (cGAN) for single x-ray projection-based tumor localization.
    Wei R; Liu B; Zhou F; Bai X; Fu D; Liang B; Wu Q
    Phys Med Biol; 2020 Jul; 65(14):145009. PubMed ID: 32320959
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.