BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 32342311)

  • 1. Extracellular Oxidases of Basidiomycete Neonothopanus nambi: Isolation and Some Properties.
    Ronzhin NO; Mogilnaya OA; Artemenko KS; Posokhina ED; Bondar VS
    Dokl Biochem Biophys; 2020 Jan; 490(1):38-42. PubMed ID: 32342311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extracellular Oxidase from the Neonothopanus nambi Fungus as a Promising Enzyme for Analytical Applications.
    Mogilnaya O; Ronzhin N; Posokhina E; Bondar V
    Protein J; 2021 Oct; 40(5):731-740. PubMed ID: 34143382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reusable System for Phenol Detection in an Aqueous Medium Based on Nanodiamonds and Extracellular Oxidase from Basidiomycete Neonothopanus nambi.
    Ronzhin NO; Mogilnaya OA; Posokhina ED; Bondar VS
    Dokl Biochem Biophys; 2021 Jul; 499(1):220-224. PubMed ID: 34426915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finding the Light Emission Stimulator of Neonothopanus nambi Basidiomycete and Studying Its Properties.
    Ronzhin NO; Posokhina ED; Mogilnaya OA; Bondar VS
    Dokl Biochem Biophys; 2022 Apr; 503(1):80-84. PubMed ID: 35538283
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Creation of Bifunctional Indicating Complex Based on Nanodiamonds and Extracellular Oxidases of Luminous Fungus Neonothopanus nambi.
    Mogilnaya OA; Ronzhin NO; Artemenko KS; Bondar VS
    Dokl Biochem Biophys; 2018 May; 480(1):135-138. PubMed ID: 30008093
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stimulation of luminescence of mycelium of luminous fungus Neonothopanus nambi by ionizing radiation.
    Kobzeva TV; Melnikov AR; Karogodina TY; Zikirin SB; Stass DV; Molin YN; Rodicheva EK; Medvedeva SE; Puzyr AP; Burov AA; Bondar VS; Gitelson JI
    Luminescence; 2014 Nov; 29(7):703-10. PubMed ID: 24729569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rational Design and Mutagenesis of Fungal Luciferase from Neonothopanus nambi.
    Beregovaya KA; Myshkina NM; Chepurnykh TV; Kotlobay AA; Purtov KV; Petushkov VN; Rodionova NS; Yampolsky IV
    Dokl Biochem Biophys; 2021 May; 496(1):14-17. PubMed ID: 33689067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Cooxidation of phenol and 4-aminoantipyrin, catalyzed by polymers and copolymers of horseradish root peroxidase and Penicillium funiculosum 46.1 glucose oxidase].
    Eremin AN; Semashko TV; Mikhaĭlova RV
    Prikl Biokhim Mikrobiol; 2006; 42(4):452-61. PubMed ID: 17022456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Veratryl alcohol oxidases from the lignin-degrading basidiomycete Pleurotus sajor-caju.
    Bourbonnais R; Paice MG
    Biochem J; 1988 Oct; 255(2):445-50. PubMed ID: 3060110
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxalic acid degradation by a novel fungal oxalate oxidase from Abortiporus biennis.
    Grąz M; Rachwał K; Zan R; Jarosz-Wilkołazka A
    Acta Biochim Pol; 2016; 63(3):595-600. PubMed ID: 27337220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Recombinant Luciferase of the Fungus Neonothopanus nambi: Obtaining and Properties.
    Gorokhovatsky AY; Chepurnykh TV; Shcheglov AS; Mokrushina YA; Baranova MN; Goncharuk SA; Purtov KV; Petushkov VN; Rodionova NS; Yampolsky IV
    Dokl Biochem Biophys; 2021 May; 496(1):52-55. PubMed ID: 33689076
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Total Peroxidase and Catalase Activity of Luminous Basidiomycetes Armillaria borealis and Neonothopanus nambi in Comparison with the Level of Light Emission].
    Mogil'naya OA; Ronzhin NO; Medvedeva SE; Bondar VS
    Prikl Biokhim Mikrobiol; 2015; 51(4):395-401. PubMed ID: 26353404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic properties of manganese peroxidase from the mushroom Stereum ostrea and its ability to decolorize dyes.
    Praveen K; Usha KY; Viswanath B; Reddy BR
    J Microbiol Biotechnol; 2012 Nov; 22(11):1540-8. PubMed ID: 23124346
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of superoxide and superoxide dismutase on lignin peroxidase-catalyzed veratryl alcohol oxidation.
    Barr DP; Aust SD
    Arch Biochem Biophys; 1994 Jun; 311(2):378-82. PubMed ID: 8203900
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochemical and physical characterization of the active FAD-containing form of nitroalkane oxidase from Fusarium oxysporum.
    Gadda G; Fitzpatrick PF
    Biochemistry; 1998 Apr; 37(17):6154-64. PubMed ID: 9558355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heterologous Production and Characterization of Two Glyoxal Oxidases from Pycnoporus cinnabarinus.
    Daou M; Piumi F; Cullen D; Record E; Faulds CB
    Appl Environ Microbiol; 2016 Aug; 82(16):4867-75. PubMed ID: 27260365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation and cDNA cloning of novel hydrogen peroxide-dependent phenol oxidase from the basidiomycete Termitomyces albuminosus.
    Johjima T; Ohkuma M; Kudo T
    Appl Microbiol Biotechnol; 2003 May; 61(3):220-5. PubMed ID: 12698279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of an extracellular salicyl alcohol oxidase from larval defensive secretions of Chrysomela populi and Phratora vitellinae (Chrysomelina).
    Brückmann M; Termonia A; Pasteels JM; Hartmann T
    Insect Biochem Mol Biol; 2002 Nov; 32(11):1517-23. PubMed ID: 12530219
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation and partial characterization of catechol 1,2-dioxygenase of phenol degrading yeast Candida tropicalis.
    Vilimkova L; Jechova J; Koubkova Z; Paca J; Kremlackova V; Poljakova J; Paca J; Stiborova M
    Neuro Endocrinol Lett; 2009; 30 Suppl 1():80-7. PubMed ID: 20027149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic modelling of phenol co-oxidation using horseradish peroxidase.
    Carvalho RH; Lemos F; Lemos MA; Vojinović V; Fonseca LP; Cabral JM
    Bioprocess Biosyst Eng; 2006 Jul; 29(2):99-108. PubMed ID: 16612606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.