These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 3234237)

  • 1. Effect of nimodipine on drinking behavior measured in the runway: comparison and interaction with (+/-)-amphetamine.
    Nencini P; Graziani M; Grassi MC
    Drug Alcohol Depend; 1988 Oct; 22(1-2):9-14. PubMed ID: 3234237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of amphetamine and scopolamine on adjunctive drinking and wheel-running in rats.
    Williams JL; White JM
    Psychopharmacology (Berl); 1984; 82(4):360-7. PubMed ID: 6427829
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of nimodipine on the discriminative stimulus properties of d-amphetamine in rats.
    Nencini P; Woolverton WL
    Psychopharmacology (Berl); 1988; 96(1):40-4. PubMed ID: 3147476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Behavioral sensitization: characterization of enduring changes in rotational behavior produced by intermittent injections of amphetamine in male and female rats.
    Robinson TE
    Psychopharmacology (Berl); 1984; 84(4):466-75. PubMed ID: 6441946
    [TBL] [Abstract][Full Text] [Related]  

  • 5. (-)-Norpseudoephedrine, but not (+/-)-amphetamine, prevents the increase in fluid intake associated with ethanol presentation in rats.
    Nencini P; Valeri P
    Pharmacol Res; 1991 Jul; 24(1):83-91. PubMed ID: 1946145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Opiatergic modulation of preparatory and consummatory components of feeding and drinking.
    Nencini P; Graziani M
    Pharmacol Biochem Behav; 1990 Nov; 37(3):531-7. PubMed ID: 1965043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nucleus accumbens PKA inhibition blocks acquisition but enhances expression of amphetamine-produced conditioned activity in rats.
    Gerdjikov TV; Giles AC; Swain SN; Beninger RJ
    Psychopharmacology (Berl); 2007 Jan; 190(1):65-72. PubMed ID: 17047929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amphetamine reinstates polydipsia induced by chronic exposure to quinpirole, a dopaminergic D2 agonist, in rats.
    Fraioli S; Cioli I; Nencini P
    Behav Brain Res; 1997 Dec; 89(1-2):199-215. PubMed ID: 9475627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Roles of hippocampal NMDA receptors and nucleus accumbens D1 receptors in the amphetamine-produced conditioned place preference in rats.
    Tan SE
    Brain Res Bull; 2008 Dec; 77(6):412-9. PubMed ID: 18929625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in the performance of schedule-induced polydipsia (SIP) in rats after arecoline and amphetamine treatments.
    Shen TF; Wang HC; Wan FJ; Tung CS
    Proc Natl Sci Counc Repub China B; 2001 Oct; 25(4):214-22. PubMed ID: 11699569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dose-dependent dissociable effects of haloperidol on locomotion, appetitive responses, and consummatory behavior in water-deprived rats.
    Huang AC; Shyu BC; Hsiao S
    Pharmacol Biochem Behav; 2010 May; 95(3):285-91. PubMed ID: 20153357
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Environment-specific reinstatement of amphetamine-mediated hyperdipsia by morphine and (-)-norpseudoephedrine.
    Nencini P; Fraioli S
    Pharmacol Biochem Behav; 1994 Feb; 47(2):339-43. PubMed ID: 8146226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Appetitive acquisition and extinction effects with exogenous ACTH.
    Guth S; Levine S; Seward JP
    Physiol Behav; 1971 Aug; 7(2):195-200. PubMed ID: 4337408
    [No Abstract]   [Full Text] [Related]  

  • 14. Physiological and environmental aspects of drinking stimulated by chronic exposure to amphetamine in rats.
    Camanni S; Nencini P
    Gen Pharmacol; 1994 Jan; 25(1):7-13. PubMed ID: 8026715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Roles of hippocampal N-methyl-D-aspartate receptors and calcium/calmodulin-dependent protein kinase II in amphetamine-produced conditioned place preference in rats.
    Sakurai S; Yu L; Tan SE
    Behav Pharmacol; 2007 Sep; 18(5-6):497-506. PubMed ID: 17762518
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of d-amphetamine, chlorpromazine, and chlordiazepoxide on intercurrent behavior during spaced-responding schedules.
    Smith JB; Clark FC
    J Exp Anal Behav; 1975 Sep; 24(2):241-8. PubMed ID: 1206333
    [TBL] [Abstract][Full Text] [Related]  

  • 17. cAMP-dependent protein kinase and reward-related learning: intra-accumbens Rp-cAMPS blocks amphetamine-produced place conditioning in rats.
    Beninger RJ; Nakonechny PL; Savina I
    Psychopharmacology (Berl); 2003 Oct; 170(1):23-32. PubMed ID: 12768275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alteration in behavioral sensitivity to amphetamine after treatment with oxotremorine. Effect of dose and test environment.
    Gralewicz S; Lutz P; Wiaderna D; Tomas T
    Behav Brain Res; 2003 Dec; 147(1-2):163-73. PubMed ID: 14659582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chronic amphetamine: is dopamine a link in or a mediator of the development of tolerance and reverse tolerance?
    Kuczenski R; Leith NJ
    Pharmacol Biochem Behav; 1981 Sep; 15(3):405-13. PubMed ID: 7291244
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of opiate mechanisms in the development of tolerance to the anorectic effects of amphetamines.
    Nencini P
    Pharmacol Biochem Behav; 1988 Jul; 30(3):755-64. PubMed ID: 3211985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.