These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 32343022)

  • 1. Cysteine/Penicillamine Ligation Independent of Terminal Steric Demands for Chemical Protein Synthesis.
    Tan Y; Li J; Jin K; Liu J; Chen Z; Yang J; Li X
    Angew Chem Int Ed Engl; 2020 Jul; 59(31):12741-12745. PubMed ID: 32343022
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Serine/Threonine Ligation and Cysteine/Penicillamine Ligation.
    Liu J; Li X
    Methods Mol Biol; 2022; 2530():33-43. PubMed ID: 35761040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Serine/Threonine Ligation: Origin, Mechanistic Aspects, and Applications.
    Liu H; Li X
    Acc Chem Res; 2018 Jul; 51(7):1643-1655. PubMed ID: 29979577
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of peptides and proteins without cysteine residues by native chemical ligation combined with desulfurization.
    Yan LZ; Dawson PE
    J Am Chem Soc; 2001 Jan; 123(4):526-33. PubMed ID: 11456564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient Palladium-Assisted One-Pot Deprotection of (Acetamidomethyl)Cysteine Following Native Chemical Ligation and/or Desulfurization To Expedite Chemical Protein Synthesis.
    Maity SK; Jbara M; Laps S; Brik A
    Angew Chem Int Ed Engl; 2016 Jul; 55(28):8108-12. PubMed ID: 27126503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advances in Native Chemical Ligation-Desulfurization: A Powerful Strategy for Peptide and Protein Synthesis.
    Jin K; Li X
    Chemistry; 2018 Nov; 24(66):17397-17404. PubMed ID: 29947435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ligation-desulfurization: a powerful combination in the synthesis of peptides and glycopeptides.
    Rohde H; Seitz O
    Biopolymers; 2010; 94(4):551-9. PubMed ID: 20593472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and use of a pseudo-cysteine for native chemical ligation.
    Alves DA; Esser D; Broadbridge RJ; Beevers AP; Chapman CP; Winsor CE; Betley JR
    J Pept Sci; 2003 Apr; 9(4):221-8. PubMed ID: 12725243
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidation and Phenolysis of Peptide/Protein C-Terminal Hydrazides Afford Salicylaldehyde Ester Surrogates for Chemical Protein Synthesis.
    Lin S; Mo Z; Wang P; He C
    J Am Chem Soc; 2023 Aug; 145(30):16843-16851. PubMed ID: 37470345
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Postligation-desulfurization: a general approach for chemical protein synthesis.
    Ma J; Zeng J; Wan Q
    Top Curr Chem; 2015; 363():57-101. PubMed ID: 25663556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. P-B Desulfurization: An Enabling Method for Protein Chemical Synthesis and Site-Specific Deuteration.
    Jin K; Li T; Chow HY; Liu H; Li X
    Angew Chem Int Ed Engl; 2017 Nov; 56(46):14607-14611. PubMed ID: 28971554
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein synthesis by native chemical ligation: expanded scope by using straightforward methodology.
    Hackeng TM; Griffin JH; Dawson PE
    Proc Natl Acad Sci U S A; 1999 Aug; 96(18):10068-73. PubMed ID: 10468563
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reinvestigation of an O-Salicylaldehyde Ester Functional Group in Aqueous Buffer and Discovery of a Coumarin Scaffold Probe for Selective N-Terminal Cysteine Labeling.
    Murale DP; Hong SC; Jang SY; Lee JS
    Chembiochem; 2018 Dec; 19(24):2545-2549. PubMed ID: 30325101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Serine/threonine ligation for the chemical synthesis of proteins.
    Lee CL; Li X
    Curr Opin Chem Biol; 2014 Oct; 22():108-14. PubMed ID: 25299572
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective desulfurization of cysteine in the presence of Cys(Acm) in polypeptides obtained by native chemical ligation.
    Pentelute BL; Kent SB
    Org Lett; 2007 Feb; 9(4):687-90. PubMed ID: 17286375
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of protected peptidyl thioester intermediates for native chemical ligation by Nalpha-9-fluorenylmethoxycarbonyl (Fmoc) chemistry: considerations of side-chain and backbone anchoring strategies, and compatible protection for N-terminal cysteine.
    Gross CM; Lelièvre D; Woodward CK; Barany G
    J Pept Res; 2005 Mar; 65(3):395-410. PubMed ID: 15787970
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unprotected peptides as building blocks for branched peptides and peptide dendrimers.
    Spetzler JC; Tam JP
    Int J Pept Protein Res; 1995 Jan; 45(1):78-85. PubMed ID: 7775011
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enabling N-to-C Ser/Thr Ligation for Convergent Protein Synthesis via Combining Chemical Ligation Approaches.
    Lee CL; Liu H; Wong CT; Chow HY; Li X
    J Am Chem Soc; 2016 Aug; 138(33):10477-84. PubMed ID: 27479006
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated Fmoc-based solid-phase synthesis of peptide thioesters with self-purification effect and application in the construction of immobilized SH3 domains.
    Mende F; Beisswenger M; Seitz O
    J Am Chem Soc; 2010 Aug; 132(32):11110-8. PubMed ID: 20662535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein derivitization-expressed protein ligation.
    Mitchell SF; Lorsch JR
    Methods Enzymol; 2014; 536():95-108. PubMed ID: 24423270
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.