BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 32343434)

  • 21. Machine learning study of several classifiers trained with texture analysis features to differentiate benign from malignant soft-tissue tumors in T1-MRI images.
    Juntu J; Sijbers J; De Backer S; Rajan J; Van Dyck D
    J Magn Reson Imaging; 2010 Mar; 31(3):680-9. PubMed ID: 20187212
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Computer-aided diagnosis system for classifying benign and malignant thyroid nodules in multi-stained FNAB cytological images.
    Gopinath B; Shanthi N
    Australas Phys Eng Sci Med; 2013 Jun; 36(2):219-30. PubMed ID: 23690210
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In vivo optical coherence tomography of the human larynx: normative and benign pathology in 82 patients.
    Wong BJ; Jackson RP; Guo S; Ridgway JM; Mahmood U; Su J; Shibuya TY; Crumley RL; Gu M; Armstrong WB; Chen Z
    Laryngoscope; 2005 Nov; 115(11):1904-11. PubMed ID: 16319597
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Advances in laryngeal imaging.
    Verikas A; Uloza V; Bacauskiene M; Gelzinis A; Kelertas E
    Eur Arch Otorhinolaryngol; 2009 Oct; 266(10):1509-20. PubMed ID: 19618198
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Co-trained convolutional neural networks for automated detection of prostate cancer in multi-parametric MRI.
    Yang X; Liu C; Wang Z; Yang J; Min HL; Wang L; Cheng KT
    Med Image Anal; 2017 Dec; 42():212-227. PubMed ID: 28850876
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Novel automated vessel pattern characterization of larynx contact endoscopic video images.
    Esmaeili N; Illanes A; Boese A; Davaris N; Arens C; Friebe M
    Int J Comput Assist Radiol Surg; 2019 Oct; 14(10):1751-1761. PubMed ID: 31352673
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Construction of a convolutional neural network classifier developed by computed tomography images for pancreatic cancer diagnosis.
    Ma H; Liu ZX; Zhang JJ; Wu FT; Xu CF; Shen Z; Yu CH; Li YM
    World J Gastroenterol; 2020 Sep; 26(34):5156-5168. PubMed ID: 32982116
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Diagnosis of vocal cord leukoplakia: The role of a novel narrow band imaging endoscopic classification.
    Ni XG; Zhu JQ; Zhang QQ; Zhang BG; Wang GQ
    Laryngoscope; 2019 Feb; 129(2):429-434. PubMed ID: 30229933
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Contact Endoscopy - Narrow Band Imaging (CE-NBI) data set for laryngeal lesion assessment.
    Esmaeili N; Davaris N; Boese A; Illanes A; Navab N; Friebe M; Arens C
    Sci Data; 2023 Oct; 10(1):733. PubMed ID: 37865668
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Laryngopharyngeal reflux image quantization and analysis of its severity.
    Kuo CJ; Kao CH; Dlamini S; Liu SC
    Sci Rep; 2020 Jul; 10(1):10975. PubMed ID: 32620899
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reliability of a transnasal flexible fiberoptic in-office laryngeal biopsy.
    Cohen JT; Safadi A; Fliss DM; Gil Z; Horowitz G
    JAMA Otolaryngol Head Neck Surg; 2013 Apr; 139(4):341-5. PubMed ID: 23519690
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluating medical images using deep convolutional neural networks: A simulated CT phantom image study.
    Hayashi N; Maruyama T; Sato Y; Watanabe H; Ogura T; Ogura A
    Technol Health Care; 2020; 28(2):113-120. PubMed ID: 31156187
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Discrimination of vocal folds lesions by multiclass classification using autofluorescence spectroscopy: An ex vivo study.
    Gaiffe O; Mahdjoub J; Ramasso E; Mauvais O; Lihoreau T; Pazart L; Wacogne B; Tavernier L
    Head Neck; 2024 May; 46(5):1136-1145. PubMed ID: 38299429
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transfer learning for informative-frame selection in laryngoscopic videos through learned features.
    Patrini I; Ruperti M; Moccia S; Mattos LS; Frontoni E; De Momi E
    Med Biol Eng Comput; 2020 Jun; 58(6):1225-1238. PubMed ID: 32212052
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The potential of virtual laryngoscopy in the assessment of vocal cord lesions.
    Walshe P; Hamilton S; McShane D; McConn Walsh R; Walsh MA; Timon C
    Clin Otolaryngol Allied Sci; 2002 Apr; 27(2):98-100. PubMed ID: 11994114
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A pilot study of autofluorescent endoscopy for the in vivo detection of laryngeal cancer.
    Delank W; Khanavkar B; Nakhosteen JA; Stoll W
    Laryngoscope; 2000 Mar; 110(3 Pt 1):368-73. PubMed ID: 10718421
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Safety of flexible endoscopic biopsy of the pharynx and larynx under topical anesthesia.
    Wellenstein DJ; de Witt JK; Schutte HW; Honings J; van den Hoogen FJA; Marres HAM; Takes RP; van den Broek GB
    Eur Arch Otorhinolaryngol; 2017 Sep; 274(9):3471-3476. PubMed ID: 28639059
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Improving Laryngoscopy Image Analysis Through Integration of Global Information and Local Features in VoFoCD Dataset.
    Dao TTP; Huynh TL; Pham MK; Le TN; Nguyen TC; Nguyen QT; Tran BA; Van BN; Ha CC; Tran MT
    J Imaging Inform Med; 2024 May; ():. PubMed ID: 38809338
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Automatic anatomical site recognition of laryngoscopic images using convolutional neural network].
    Wang M; Zhu J; Li Y; Tie C; Wang S; Zhang W; Wang G; Ni X
    Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2023 Jan; 37(1):6-12. PubMed ID: 36597361
    [No Abstract]   [Full Text] [Related]  

  • 40. A novel end-to-end classifier using domain transferred deep convolutional neural networks for biomedical images.
    Pang S; Yu Z; Orgun MA
    Comput Methods Programs Biomed; 2017 Mar; 140():283-293. PubMed ID: 28254085
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.