These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 32343543)

  • 1. Exceptional Tunability over Size and Density of Spontaneously Formed Nanoparticles via Nucleation Dynamics.
    Kim JK; Jo YR; Kim S; Koo B; Kim JH; Kim BJ; Jung W
    ACS Appl Mater Interfaces; 2020 May; 12(21):24039-24047. PubMed ID: 32343543
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth Kinetics of Individual Co Particles Ex-solved on SrTi
    Jo YR; Koo B; Seo MJ; Kim JK; Lee S; Kim K; Han JW; Jung W; Kim BJ
    J Am Chem Soc; 2019 Apr; 141(16):6690-6697. PubMed ID: 30938992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ex-Solution Hybrids Functionalized on Oxide Nanofibers for Highly Active and Durable Catalytic Materials.
    Kim DH; Kim JK; Oh D; Park S; Kim YB; Ko J; Jung W; Kim ID
    ACS Nano; 2023 Mar; 17(6):5842-5851. PubMed ID: 36916684
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dopant-Driven Positive Reinforcement in Ex-Solution Process: New Strategy to Develop Highly Capable and Durable Catalytic Materials.
    Jang JS; Kim JK; Kim K; Jung WG; Lim C; Kim S; Kim DH; Kim BJ; Han JW; Jung W; Kim ID
    Adv Mater; 2020 Nov; 32(46):e2003983. PubMed ID: 33000875
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoparticle Ex-solution for Supported Catalysts: Materials Design, Mechanism and Future Perspectives.
    Kim JH; Kim JK; Liu J; Curcio A; Jang JS; Kim ID; Ciucci F; Jung W
    ACS Nano; 2021 Jan; 15(1):81-110. PubMed ID: 33370099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nickel Nanocatalyst Ex-Solution from Ceria-Nickel Oxide Solid Solution for Low Temperature CO Oxidation.
    Singhania A; Gupta SM
    J Nanosci Nanotechnol; 2018 Jul; 18(7):4614-4620. PubMed ID: 29442638
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Particle size dependent adsorption and reaction kinetics on reduced and partially oxidized Pd nanoparticles.
    Schalow T; Brandt B; Starr DE; Laurin M; Shaikhutdinov SK; Schauermann S; Libuda J; Freund HJ
    Phys Chem Chem Phys; 2007 Mar; 9(11):1347-61. PubMed ID: 17347708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ study of nucleation and growth dynamics of Au nanoparticles on MoS
    Song B; He K; Yuan Y; Sharifi-Asl S; Cheng M; Lu J; Saidi WA; Shahbazian-Yassar R
    Nanoscale; 2018 Aug; 10(33):15809-15818. PubMed ID: 30102314
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Platinum-based oxygen reduction electrocatalysts.
    Wu J; Yang H
    Acc Chem Res; 2013 Aug; 46(8):1848-57. PubMed ID: 23808919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interface-confined oxide nanostructures for catalytic oxidation reactions.
    Fu Q; Yang F; Bao X
    Acc Chem Res; 2013 Aug; 46(8):1692-701. PubMed ID: 23458033
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heterogeneous Nucleation and Growth of Nanoparticles at Environmental Interfaces.
    Jun YS; Kim D; Neil CW
    Acc Chem Res; 2016 Sep; 49(9):1681-90. PubMed ID: 27513685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facet-Dependent in Situ Growth of Nanoparticles in Epitaxial Thin Films: The Role of Interfacial Energy.
    Kim KJ; Han H; Defferriere T; Yoon D; Na S; Kim SJ; Dayaghi AM; Son J; Oh TS; Jang HM; Choi GM
    J Am Chem Soc; 2019 May; 141(18):7509-7517. PubMed ID: 30998333
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gas Phase Chemical Evolution of Uranium, Aluminum, and Iron Oxides.
    Koroglu B; Wagnon S; Dai Z; Crowhurst JC; Armstrong MR; Weisz D; Mehl M; Zaug JM; Radousky HB; Rose TP
    Sci Rep; 2018 Jul; 8(1):10451. PubMed ID: 29992989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The energetics of supported metal nanoparticles: relationships to sintering rates and catalytic activity.
    Campbell CT
    Acc Chem Res; 2013 Aug; 46(8):1712-9. PubMed ID: 23607711
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atomically-defined model catalysts in ultrahigh vacuum and in liquid electrolytes: particle size-dependent CO adsorption on Pt nanoparticles on ordered Co
    Faisal F; Stumm C; Bertram M; Wähler T; Schuster R; Xiang F; Lytken O; Katsounaros I; Mayrhofer KJJ; Schneider MA; Brummel O; Libuda J
    Phys Chem Chem Phys; 2018 Sep; 20(36):23702-23716. PubMed ID: 30191927
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct observation of metal nanoparticles as heterogeneous nuclei for the condensation of supersaturated organic vapors: nucleation of size-selected aluminum nanoparticles in acetonitrile and n-hexane vapors.
    Abdelsayed V; El-Shall MS
    J Chem Phys; 2014 Aug; 141(5):054710. PubMed ID: 25106603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sintering of catalytic nanoparticles: particle migration or Ostwald ripening?
    Hansen TW; Delariva AT; Challa SR; Datye AK
    Acc Chem Res; 2013 Aug; 46(8):1720-30. PubMed ID: 23634641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-assembly of MoO
    Ishizuka S; Kimura Y; Yokoi S; Yamazaki T; Sato R; Hama T
    Nanoscale; 2017 Jul; 9(28):10109-10116. PubMed ID: 28695940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrasmall Ferrite Nanoparticles Synthesized via Dynamic Simultaneous Thermal Decomposition for High-Performance and Multifunctional T
    Zhang H; Li L; Liu XL; Jiao J; Ng CT; Yi JB; Luo YE; Bay BH; Zhao LY; Peng ML; Gu N; Fan HM
    ACS Nano; 2017 Apr; 11(4):3614-3631. PubMed ID: 28371584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of single-walled carbon nanotube nucleation, growth, and healing determined using QM/MD methods.
    Page AJ; Ohta Y; Irle S; Morokuma K
    Acc Chem Res; 2010 Oct; 43(10):1375-85. PubMed ID: 20954752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.