These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 32343645)

  • 41. Mapping of a non-spatial dimension by the hippocampal-entorhinal circuit.
    Aronov D; Nevers R; Tank DW
    Nature; 2017 Mar; 543(7647):719-722. PubMed ID: 28358077
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Neural representations of space in the hippocampus of a food-caching bird.
    Payne HL; Lynch GF; Aronov D
    Science; 2021 Jul; 373(6552):343-348. PubMed ID: 34437154
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Multiscale representation of very large environments in the hippocampus of flying bats.
    Eliav T; Maimon SR; Aljadeff J; Tsodyks M; Ginosar G; Las L; Ulanovsky N
    Science; 2021 May; 372(6545):. PubMed ID: 34045327
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A continuous attractor network model without recurrent excitation: maintenance and integration in the head direction cell system.
    Boucheny C; Brunel N; Arleo A
    J Comput Neurosci; 2005; 18(2):205-27. PubMed ID: 15714270
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A Positioning Method Based on Place Cells and Head-Direction Cells for Inertial/Visual Brain-Inspired Navigation System.
    Chen Y; Xiong Z; Liu J; Yang C; Chao L; Peng Y
    Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34883992
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Spatial coordinate transforms linking the allocentric hippocampal and egocentric parietal primate brain systems for memory, action in space, and navigation.
    Rolls ET
    Hippocampus; 2020 Apr; 30(4):332-353. PubMed ID: 31697002
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Revealing neural correlates of behavior without behavioral measurements.
    Rubin A; Sheintuch L; Brande-Eilat N; Pinchasof O; Rechavi Y; Geva N; Ziv Y
    Nat Commun; 2019 Oct; 10(1):4745. PubMed ID: 31628322
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The postrhinal cortex is not necessary for landmark control in rat head direction cells.
    Peck JR; Taube JS
    Hippocampus; 2017 Feb; 27(2):156-168. PubMed ID: 27860052
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Fundamental limits on persistent activity in networks of noisy neurons.
    Burak Y; Fiete IR
    Proc Natl Acad Sci U S A; 2012 Oct; 109(43):17645-50. PubMed ID: 23047704
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Design of continuous attractor networks with monotonic tuning using a symmetry principle.
    Machens CK; Brody CD
    Neural Comput; 2008 Feb; 20(2):452-85. PubMed ID: 18047414
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Basic mechanisms for graded persistent activity: discrete attractors, continuous attractors, and dynamic representations.
    Brody CD; Romo R; Kepecs A
    Curr Opin Neurobiol; 2003 Apr; 13(2):204-11. PubMed ID: 12744975
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Neurons in Primate Entorhinal Cortex Represent Gaze Position in Multiple Spatial Reference Frames.
    Meister MLR; Buffalo EA
    J Neurosci; 2018 Mar; 38(10):2430-2441. PubMed ID: 29386260
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Neurophysiological and computational analyses of the primate presubiculum, subiculum and related areas.
    Rolls ET
    Behav Brain Res; 2006 Nov; 174(2):289-303. PubMed ID: 16859765
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Convergence of head direction and place information in the CA1 region of hippocampus.
    Leutgeb S; Ragozzino KE; Mizumori SJ
    Neuroscience; 2000; 100(1):11-9. PubMed ID: 10996454
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A principle for learning egocentric-allocentric transformation.
    Byrne P; Becker S
    Neural Comput; 2008 Mar; 20(3):709-37. PubMed ID: 18045016
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Spatial representations of self and other in the hippocampus.
    Danjo T; Toyoizumi T; Fujisawa S
    Science; 2018 Jan; 359(6372):213-218. PubMed ID: 29326273
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Attractor neural network models of spatial maps in hippocampus.
    Tsodyks M
    Hippocampus; 1999; 9(4):481-9. PubMed ID: 10495029
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Spatial Representation of Hippocampal Place Cells in a T-Maze with an Aversive Stimulation.
    Okada S; Igata H; Sasaki T; Ikegaya Y
    Front Neural Circuits; 2017; 11():101. PubMed ID: 29321727
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Hippocampal spatial representations require vestibular input.
    Stackman RW; Clark AS; Taube JS
    Hippocampus; 2002; 12(3):291-303. PubMed ID: 12099481
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Can Grid Cell Ensembles Represent Multiple Spaces?
    Spalla D; Dubreuil A; Rosay S; Monasson R; Treves A
    Neural Comput; 2019 Dec; 31(12):2324-2347. PubMed ID: 31614108
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.