BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 32343733)

  • 1. Combining independent de novo assemblies to optimize leaf transcriptome of Persian walnut.
    Sadat-Hosseini M; Bakhtiarizadeh MR; Boroomand N; Tohidfar M; Vahdati K
    PLoS One; 2020; 15(4):e0232005. PubMed ID: 32343733
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combining transcriptome assemblies from multiple de novo assemblers in the allo-tetraploid plant Nicotiana benthamiana.
    Nakasugi K; Crowhurst R; Bally J; Waterhouse P
    PLoS One; 2014; 9(3):e91776. PubMed ID: 24614631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of De Novo Transcriptome Assemblers and k-mer Strategies Using the Killifish, Fundulus heteroclitus.
    Rana SB; Zadlock FJ; Zhang Z; Murphy WR; Bentivegna CS
    PLoS One; 2016; 11(4):e0153104. PubMed ID: 27054874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comprehensive evaluation of de novo transcriptome assembly programs and their effects on differential gene expression analysis.
    Wang S; Gribskov M
    Bioinformatics; 2017 Feb; 33(3):327-333. PubMed ID: 28172640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimizing an efficient ensemble approach for high-quality de novo transcriptome assembly of Thymus daenensis.
    Ahmadi H; Sheikh-Assadi M; Fatahi R; Zamani Z; Shokrpour M
    Sci Rep; 2023 Jul; 13(1):12415. PubMed ID: 37524806
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assembly and annotation of a non-model gastropod (Nerita melanotragus) transcriptome: a comparison of de novo assemblers.
    Amin S; Prentis PJ; Gilding EK; Pavasovic A
    BMC Res Notes; 2014 Aug; 7():488. PubMed ID: 25084827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Challenges and advances for transcriptome assembly in non-model species.
    Ungaro A; Pech N; Martin JF; McCairns RJS; Mévy JP; Chappaz R; Gilles A
    PLoS One; 2017; 12(9):e0185020. PubMed ID: 28931057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A reference transcriptome for walnut anthracnose pathogen, Ophiognomonia leptostyla, guides the discovery of candidate virulence genes.
    Khelghatibana F; Javan-Nikkhah M; Safaie N; Sobhani A; Shams S; Sari E
    Fungal Genet Biol; 2023 Dec; 169():103828. PubMed ID: 37657751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimized sequencing depth and de novo assembler for deeply reconstructing the transcriptome of the tea plant, an economically important plant species.
    Li FD; Tong W; Xia EH; Wei CL
    BMC Bioinformatics; 2019 Nov; 20(1):553. PubMed ID: 31694521
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combined de novo and genome guided assembly and annotation of the Pinus patula juvenile shoot transcriptome.
    Visser EA; Wegrzyn JL; Steenkmap ET; Myburg AA; Naidoo S
    BMC Genomics; 2015 Dec; 16():1057. PubMed ID: 26652261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inferring bona fide transfrags in RNA-Seq derived-transcriptome assemblies of non-model organisms.
    Mbandi SK; Hesse U; van Heusden P; Christoffels A
    BMC Bioinformatics; 2015 Feb; 16(1):58. PubMed ID: 25880035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. De novo transcriptome assembly for a non-model species, the blood-sucking bug Triatoma brasiliensis, a vector of Chagas disease.
    Marchant A; Mougel F; Almeida C; Jacquin-Joly E; Costa J; Harry M
    Genetica; 2015 Apr; 143(2):225-39. PubMed ID: 25233990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNA-seq analysis of Quercus pubescens Leaves: de novo transcriptome assembly, annotation and functional markers development.
    Torre S; Tattini M; Brunetti C; Fineschi S; Fini A; Ferrini F; Sebastiani F
    PLoS One; 2014; 9(11):e112487. PubMed ID: 25393112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. De novo transcriptome assembly: A comprehensive cross-species comparison of short-read RNA-Seq assemblers.
    Hölzer M; Marz M
    Gigascience; 2019 May; 8(5):. PubMed ID: 31077315
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparing de novo transcriptome assembly tools in di- and autotetraploid non-model plant species.
    Madritsch S; Burg A; Sehr EM
    BMC Bioinformatics; 2021 Mar; 22(1):146. PubMed ID: 33752598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptome assembly for a colour-polymorphic grasshopper (Gomphocerus sibiricus) with a very large genome size.
    Shah A; Hoffman JI; Schielzeth H
    BMC Genomics; 2019 May; 20(1):370. PubMed ID: 31088494
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative analyses of two Geraniaceae transcriptomes using next-generation sequencing.
    Zhang J; Ruhlman TA; Mower JP; Jansen RK
    BMC Plant Biol; 2013 Dec; 13():228. PubMed ID: 24373163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RNA sequencing and de novo assembly of Solanum trilobatum leaf transcriptome to identify putative transcripts for major metabolic pathways.
    Lateef A; Prabhudas SK; Natarajan P
    Sci Rep; 2018 Oct; 8(1):15375. PubMed ID: 30337583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. De novo assembly and characterization of the leaf, bud, and fruit transcriptome from the vulnerable tree Juglans mandshurica for the development of 20 new microsatellite markers using Illumina sequencing.
    Hu Z; Zhang T; Gao XX; Wang Y; Zhang Q; Zhou HJ; Zhao GF; Wang ML; Woeste KE; Zhao P
    Mol Genet Genomics; 2016 Apr; 291(2):849-62. PubMed ID: 26614514
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Critical assessment of assembly strategies for non-model species mRNA-Seq data and application of next-generation sequencing to the comparison of C(3) and C(4) species.
    Bräutigam A; Mullick T; Schliesky S; Weber AP
    J Exp Bot; 2011 May; 62(9):3093-102. PubMed ID: 21398430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.