These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 32343785)

  • 1. Monocular Deprivation Affects Visual Cortex Plasticity Through cPKCγ-Modulated GluR1 Phosphorylation in Mice.
    Zhang Y; Fu T; Han S; Ding Y; Wang J; Zheng J; Li J
    Invest Ophthalmol Vis Sci; 2020 Apr; 61(4):44. PubMed ID: 32343785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of cPKCγ on Synapsin-Ia/b-Specific Phosphorylation Sites in the Developing Visual Cortex of Mice.
    Fu T; Wang J; Ding Y; Zhang Y; Han S; Li J
    Invest Ophthalmol Vis Sci; 2019 Jun; 60(7):2676-2684. PubMed ID: 31242289
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement of vision by monocular deprivation in adult mice.
    Prusky GT; Alam NM; Douglas RM
    J Neurosci; 2006 Nov; 26(45):11554-61. PubMed ID: 17093076
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Homeostatic plasticity in the visual thalamus by monocular deprivation.
    Krahe TE; Guido W
    J Neurosci; 2011 May; 31(18):6842-9. PubMed ID: 21543614
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experience-enabled enhancement of adult visual cortex function.
    Tschetter WW; Alam NM; Yee CW; Gorz M; Douglas RM; Sagdullaev B; Prusky GT
    J Neurosci; 2013 Mar; 33(12):5362-6. PubMed ID: 23516301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monocular deprivation delays the dynamic changes of phosphorylated synapsin Ia/b at site-1 in contralateral visual cortex of juvenile mice.
    Fu T; Su Q; Xi P; Han S; Li J
    Neurochem Res; 2015 Mar; 40(3):524-30. PubMed ID: 25576091
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of GluA1 in ocular dominance plasticity in the mouse visual cortex.
    Ranson A; Sengpiel F; Fox K
    J Neurosci; 2013 Sep; 33(38):15220-5. PubMed ID: 24048851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binocular Disparity Selectivity Weakened after Monocular Deprivation in Mouse V1.
    Scholl B; Pattadkal JJ; Priebe NJ
    J Neurosci; 2017 Jul; 37(27):6517-6526. PubMed ID: 28576937
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Depressed from deprivation? Look to the molecules.
    McAllister AK; Usrey WM
    Nat Neurosci; 2003 Aug; 6(8):787-8. PubMed ID: 12886221
    [No Abstract]   [Full Text] [Related]  

  • 10. Molecular mechanism for loss of visual cortical responsiveness following brief monocular deprivation.
    Heynen AJ; Yoon BJ; Liu CH; Chung HJ; Huganir RL; Bear MF
    Nat Neurosci; 2003 Aug; 6(8):854-62. PubMed ID: 12886226
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Involvement of T-type Ca2+ channels in the potentiation of synaptic and visual responses during the critical period in rat visual cortex.
    Yoshimura Y; Inaba M; Yamada K; Kurotani T; Begum T; Reza F; Maruyama T; Komatsu Y
    Eur J Neurosci; 2008 Aug; 28(4):730-43. PubMed ID: 18657180
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterozygous knock-out mice for brain-derived neurotrophic factor show a pathway-specific impairment of long-term potentiation but normal critical period for monocular deprivation.
    Bartoletti A; Cancedda L; Reid SW; Tessarollo L; Porciatti V; Pizzorusso T; Maffei L
    J Neurosci; 2002 Dec; 22(23):10072-7. PubMed ID: 12451106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enduring critical period plasticity visualized by transcranial flavoprotein imaging in mouse primary visual cortex.
    Tohmi M; Kitaura H; Komagata S; Kudoh M; Shibuki K
    J Neurosci; 2006 Nov; 26(45):11775-85. PubMed ID: 17093098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vascular endothelial growth factor B prevents the shift in the ocular dominance distribution of visual cortical neurons in monocularly deprived rats.
    Shan L; Yong H; Song Q; Wei Y; Qin R; Zhang G; Xu M; Zhang S
    Exp Eye Res; 2013 Apr; 109():17-21. PubMed ID: 23370270
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experience-dependent structural plasticity at pre- and postsynaptic sites of layer 2/3 cells in developing visual cortex.
    Sun YJ; Espinosa JS; Hoseini MS; Stryker MP
    Proc Natl Acad Sci U S A; 2019 Oct; 116(43):21812-21820. PubMed ID: 31591211
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphorylation of AMPA receptors is required for sensory deprivation-induced homeostatic synaptic plasticity.
    Goel A; Xu LW; Snyder KP; Song L; Goenaga-Vazquez Y; Megill A; Takamiya K; Huganir RL; Lee HK
    PLoS One; 2011 Mar; 6(3):e18264. PubMed ID: 21483826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anatomical correlates of functional plasticity in mouse visual cortex.
    Antonini A; Fagiolini M; Stryker MP
    J Neurosci; 1999 Jun; 19(11):4388-406. PubMed ID: 10341241
    [TBL] [Abstract][Full Text] [Related]  

  • 18. cPKCγ alleviates ischemic injury through modulating synapsin Ia/b phosphorylation in neurons of mice.
    Zhang N; Zhu H; Han S; Sui L; Li J
    Brain Res Bull; 2018 Sep; 142():156-162. PubMed ID: 30016727
    [TBL] [Abstract][Full Text] [Related]  

  • 19. cPKCγ-Modulated Autophagy in Neurons Alleviates Ischemic Injury in Brain of Mice with Ischemic Stroke Through Akt-mTOR Pathway.
    Wei H; Li Y; Han S; Liu S; Zhang N; Zhao L; Li S; Li J
    Transl Stroke Res; 2016 Dec; 7(6):497-511. PubMed ID: 27510769
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Permissive proteolytic activity for visual cortical plasticity.
    Mataga N; Nagai N; Hensch TK
    Proc Natl Acad Sci U S A; 2002 May; 99(11):7717-21. PubMed ID: 12032349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.