These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

368 related articles for article (PubMed ID: 32343907)

  • 41. Advances in microfluidics for drug discovery.
    Lombardi D; Dittrich PS
    Expert Opin Drug Discov; 2010 Nov; 5(11):1081-94. PubMed ID: 22827746
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A Review of Microfluidic Experimental Designs for Nanoparticle Synthesis.
    Niculescu AG; Mihaiescu DE; Grumezescu AM
    Int J Mol Sci; 2022 Jul; 23(15):. PubMed ID: 35955420
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Optimal design of microgrooved channels with electrokinetic pumping for lab-on-a-chip applications.
    Du E; Manoochehri S
    IET Nanobiotechnol; 2010 Jun; 4(2):40-9. PubMed ID: 20499997
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Microfluidics without pumps: reinventing the T-sensor and H-filter in paper networks.
    Osborn JL; Lutz B; Fu E; Kauffman P; Stevens DY; Yager P
    Lab Chip; 2010 Oct; 10(20):2659-65. PubMed ID: 20680208
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Modeling-Guided Design of Paper Microfluidic Networks: A Case Study of Sequential Fluid Delivery.
    Rath D; Toley BJ
    ACS Sens; 2021 Jan; 6(1):91-99. PubMed ID: 33382580
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A novel microfluidic chip-based sperm-sorting device constructed using design of experiment method.
    Phiphattanaphiphop C; Leksakul K; Phatthanakun R; Khamlor T
    Sci Rep; 2020 Oct; 10(1):17143. PubMed ID: 33051512
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Instantaneous simulation of fluids and particles in complex microfluidic devices.
    Wang J; Rodgers VGJ; Brisk P; Grover WH
    PLoS One; 2017; 12(12):e0189429. PubMed ID: 29267312
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Experimental investigation and computational modeling of hydrodynamics in bifurcating microchannels.
    Janakiraman V; Sastry S; Kadambi JR; Baskaran H
    Biomed Microdevices; 2008 Jun; 10(3):355-65. PubMed ID: 18175219
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Machine Learning-Aided Microdroplets Breakup Characteristic Prediction in Flow-Focusing Microdevices by Incorporating Variations of Cross-Flow Tilt Angles.
    Talebjedi B; Abouei Mehrizi A; Talebjedi B; Mohseni SS; Tasnim N; Hoorfar M
    Langmuir; 2022 Aug; 38(34):10465-10477. PubMed ID: 35973231
    [TBL] [Abstract][Full Text] [Related]  

  • 50. GNN-Based Concentration Prediction With Variable Input Flow Rates for Microfluidic Mixers.
    Ji W; Guo X; Pan S; Long F; Ho TY; Schlichtmann U; Yao H
    IEEE Trans Biomed Circuits Syst; 2024 Jun; 18(3):622-635. PubMed ID: 38393851
    [TBL] [Abstract][Full Text] [Related]  

  • 51. On-Chip Magnetic Particle-Based Immunoassays Using Multilaminar Flow for Clinical Diagnostics.
    Tarn MD; Pamme N
    Methods Mol Biol; 2017; 1547():69-83. PubMed ID: 28044288
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Fabrication of Three-dimensional Paper-based Microfluidic Devices for Immunoassays.
    Fernandes SC; Wilson DJ; Mace CR
    J Vis Exp; 2017 Mar; (121):. PubMed ID: 28362396
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Improved experimental time of ultra-large bioassays using a parallelised microfluidic biochip architecture/scheduling.
    Taajobian M; Jahanian A
    IET Nanobiotechnol; 2018 Jun; 12(4):484-490. PubMed ID: 29768234
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Microfluidics-based strategies for molecular diagnostics of infectious diseases.
    Wang X; Hong XZ; Li YW; Li Y; Wang J; Chen P; Liu BF
    Mil Med Res; 2022 Mar; 9(1):11. PubMed ID: 35300739
    [TBL] [Abstract][Full Text] [Related]  

  • 55. On-chip digital microfluidic architectures for enhanced actuation and sensing.
    Nichols J; Collier CM; Landry EL; Wiltshire M; Born B; Holzman JF
    J Biomed Opt; 2012 Jun; 17(6):067005. PubMed ID: 22734783
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cascades in Compartments: En Route to Machine-Assisted Biotechnology.
    Rabe KS; Müller J; Skoupi M; Niemeyer CM
    Angew Chem Int Ed Engl; 2017 Oct; 56(44):13574-13589. PubMed ID: 28691387
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A digital microfluidic method for multiplexed cell-based apoptosis assays.
    Bogojevic D; Chamberlain MD; Barbulovic-Nad I; Wheeler AR
    Lab Chip; 2012 Feb; 12(3):627-34. PubMed ID: 22159547
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Recent Developments and Applications of Microfluidic Paper-Based Analytical Devices for the Detection of Biological and Chemical Hazards in Foods: A Critical Review.
    Alahmad W; Varanusupakul P; Varanusupakul P
    Crit Rev Anal Chem; 2023; 53(2):233-252. PubMed ID: 34304654
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Recent developments in microfluidic large scale integration.
    Araci IE; Brisk P
    Curr Opin Biotechnol; 2014 Feb; 25():60-8. PubMed ID: 24484882
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Nanomaterial-assisted microfluidics for multiplex assays.
    Wang Y; Gao Y; Yin Y; Pan Y; Wang Y; Song Y
    Mikrochim Acta; 2022 Mar; 189(4):139. PubMed ID: 35275267
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.