These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 32344205)

  • 1. Recent advancement in induced-charge electrokinetic phenomena and their micro- and nano-fluidic applications.
    Feng H; Chang H; Zhong X; Wong TN
    Adv Colloid Interface Sci; 2020 Jun; 280():102159. PubMed ID: 32344205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Induced-charge electrokinetics: fundamental challenges and opportunities.
    Squires TM
    Lab Chip; 2009 Sep; 9(17):2477-83. PubMed ID: 19680573
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous-flow trapping and localized enrichment of micro- and nano-particles using induced-charge electrokinetics.
    Zhao C; Yang C
    Soft Matter; 2018 Feb; 14(6):1056-1066. PubMed ID: 29335710
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrokinetics of non-Newtonian fluids: a review.
    Zhao C; Yang C
    Adv Colloid Interface Sci; 2013 Dec; 201-202():94-108. PubMed ID: 24148843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards an understanding of induced-charge electrokinetics at large applied voltages in concentrated solutions.
    Bazant MZ; Kilic MS; Storey BD; Ajdari A
    Adv Colloid Interface Sci; 2009 Nov; 152(1-2):48-88. PubMed ID: 19879552
    [TBL] [Abstract][Full Text] [Related]  

  • 6. AC field induced-charge electroosmosis over leaky dielectric blocks embedded in a microchannel.
    Zhao C; Yang C
    Electrophoresis; 2011 Feb; 32(5):629-37. PubMed ID: 21290390
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An automated, high-throughput experimental system for induced charge electrokinetics.
    Pascall AJ; Squires TM
    Lab Chip; 2010 Sep; 10(18):2350-7. PubMed ID: 20694256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrokinetic Phenomena in Pencil Lead-Based Microfluidics.
    Bashirzadeh Y; Maruthamuthu V; Qian S
    Micromachines (Basel); 2016 Dec; 7(12):. PubMed ID: 30404407
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strategies on improving the micro-fluidic devices using the nonlinear electro- and thermo-kinetic phenomena.
    Sugioka H
    Adv Colloid Interface Sci; 2015 Dec; 226(Pt A):44-53. PubMed ID: 26482087
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dielectric polarization-mediated efficient solute mixing: Effect of the geometrical configuration of polarizing blocks.
    Pandey D; Mondal PK; Wongwises S
    Electrophoresis; 2023 Nov; 44(21-22):1637-1644. PubMed ID: 37162479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Induced charge electroosmosis micropumps using arrays of Janus micropillars.
    Paustian JS; Pascall AJ; Wilson NM; Squires TM
    Lab Chip; 2014 Sep; 14(17):3300-12. PubMed ID: 25000878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrokinetic transport phenomena in nanofluidics and their applications.
    Sun Y; Jiang R; Hu L; Song Y; Li M
    Electrophoresis; 2023 Dec; 44(23):1756-1773. PubMed ID: 37438973
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous-Flow Nanoparticle Trapping Driven by Hybrid Electrokinetics in Microfluidics.
    Liu W; Tao Y; Xue R; Song C; Wu Q; Ren Y
    Electrophoresis; 2021 Apr; 42(7-8):939-949. PubMed ID: 32705697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Net fluid flow and non-Newtonian effect in induced-charge electro-osmosis of polyelectrolyte solutions.
    Feng H; Wong TN
    Phys Rev E; 2019 Jul; 100(1-1):013105. PubMed ID: 31499862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trapping and chaining self-assembly of colloidal polystyrene particles over a floating electrode by using combined induced-charge electroosmosis and attractive dipole-dipole interactions.
    Liu W; Shao J; Jia Y; Tao Y; Ding Y; Jiang H; Ren Y
    Soft Matter; 2015 Nov; 11(41):8105-12. PubMed ID: 26332897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrokinetic biomolecule preconcentration using xurography-based micro-nano-micro fluidic devices.
    Yuan X; Renaud L; Audry MC; Kleimann P
    Anal Chem; 2015 Sep; 87(17):8695-701. PubMed ID: 26211837
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Buoyancy-Free Janus Microcylinders as Mobile Microelectrode Arrays for Continuous Microfluidic Biomolecule Collection within a Wide Frequency Range: A Numerical Simulation Study.
    Liu W; Ren Y; Tao Y; Yan H; Xiao C; Wu Q
    Micromachines (Basel); 2020 Mar; 11(3):. PubMed ID: 32164333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrolyte effect in induced charge electroosmosis.
    Feng H; Huang Y; Wong TN; Duan F
    Soft Matter; 2017 Jul; 13(28):4864-4870. PubMed ID: 28631789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-performance bioanalysis based on ion concentration polarization of micro-/nanofluidic devices.
    Wang C; Wang Y; Zhou Y; Wu ZQ; Xia XH
    Anal Bioanal Chem; 2019 Jul; 411(18):4007-4016. PubMed ID: 30972474
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bidirectional and Stepwise Rotation of Cells and Particles Using Induced Charge Electroosmosis Vortexes.
    Wang S; Zhang Z; Ma X; Yue Y; Li K; Meng Y; Wu Y
    Biosensors (Basel); 2024 Feb; 14(3):. PubMed ID: 38534219
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.