These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 32344221)

  • 1. A practical method to assess risks from large wood debris accumulations at bridge piers.
    Panici D; Kripakaran P; Djordjević S; Dentith K
    Sci Total Environ; 2020 Aug; 728():138575. PubMed ID: 32344221
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Artificial Intelligence of Things Sensing System of Real-Time Bridge Scour Monitoring for Early Warning during Floods.
    Lin YB; Lee FZ; Chang KC; Lai JS; Lo SW; Wu JH; Lin TK
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electromagnetic Sensors for Underwater Scour Monitoring.
    Maroni A; Tubaldi E; Ferguson N; Tarantino A; McDonald H; Zonta D
    Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32717822
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Model experiments on hydraulic properties around multiple piers with reproduced 3D geometries.
    Sato H
    Sci Rep; 2022 Nov; 12(1):19938. PubMed ID: 36402813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Probabilistic Model of the Economic Risk to Britain's Railway Network from Bridge Scour During Floods.
    Lamb R; Garside P; Pant R; Hall JW
    Risk Anal; 2019 Nov; 39(11):2457-2478. PubMed ID: 31318475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of bridge scour in the lower, middle, and upper Yangtze River estuary with riverbed sonar profiling techniques.
    Zheng S; Xu YJ; Cheng H; Wang B; Lu X
    Environ Monit Assess; 2017 Dec; 190(1):15. PubMed ID: 29234976
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Condition Monitoring of Railway Bridges Using Vehicle Pitch to Detect Scour.
    McGeown C; Hester D; OBrien EJ; Kim CW; Fitzgerald P; Pakrashi V
    Sensors (Basel); 2024 Mar; 24(5):. PubMed ID: 38475220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental and numerical investigation of the effect of different shapes of collars on the reduction of scour around a single bridge pier.
    Jahangirzadeh A; Basser H; Akib S; Karami H; Naji S; Shamshirband S
    PLoS One; 2014; 9(2):e98592. PubMed ID: 24919065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bridge-specific flood risk assessment of transport networks using GIS and remotely sensed data.
    Loli M; Kefalas G; Dafis S; Mitoulis SA; Schmidt F
    Sci Total Environ; 2022 Dec; 850():157976. PubMed ID: 35964757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scour Damage Detection and Structural Health Monitoring of a Laboratory-Scaled Bridge Using a Vibration Energy Harvesting Device.
    Fitzgerald PC; Malekjafarian A; Bhowmik B; Prendergast LJ; Cahill P; Kim CW; Hazra B; Pakrashi V; OBrien EJ
    Sensors (Basel); 2019 Jun; 19(11):. PubMed ID: 31174260
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Disturbance and patch-specific responses: the interactive effects of woody debris and floods on lotic invertebrates.
    Palmer MA; Arensburger P; Martin AP; Denman DW
    Oecologia; 1996 Jan; 105(2):247-257. PubMed ID: 28307090
    [TBL] [Abstract][Full Text] [Related]  

  • 12. National-scale assessment of decadal river migration at critical bridge infrastructure in the Philippines.
    Boothroyd RJ; Williams RD; Hoey TB; Tolentino PLM; Yang X
    Sci Total Environ; 2021 May; 768():144460. PubMed ID: 33450685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of bridge natural frequency as an indicator of scour using centrifuge modelling.
    Kariyawasam KD; Middleton CR; Madabhushi G; Haigh SK; Talbot JP
    J Civ Struct Health Monit; 2020; 10(5):861-881. PubMed ID: 33442503
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Restoration models of flood resilient bridges: Survey data.
    Mitoulis SA; Argyroudis SA
    Data Brief; 2021 Jun; 36():107088. PubMed ID: 34013011
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prognostication of scour around twin and three piers using efficient outlier robust extreme learning machine.
    Nou MRG; Foroudi A; Latif SD; Parsaie A
    Environ Sci Pollut Res Int; 2022 Oct; 29(49):74526-74539. PubMed ID: 35639314
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulating hydraulic interdependence between bridges along a river corridor under transient flood conditions.
    Trueheart ME; Dewoolkar MM; Rizzo DM; Huston D; Bomblies A
    Sci Total Environ; 2020 Jan; 699():134046. PubMed ID: 31683217
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Challenges in Bridge Health Monitoring: A Review.
    Rizzo P; Enshaeian A
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34202875
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of the reduction of sediment deposition and river flow resistance around dimpled surface piers.
    Zhang Y; Wang J; Zhou Q; Li H; Tang W
    Environ Sci Pollut Res Int; 2023 Apr; 30(18):52784-52803. PubMed ID: 36843162
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flood damage inspection and risk indexing data for an inventory of bridges in Central Greece.
    Loli M; Kefalas G; Dafis S; Mitoulis SA; Schmidt F
    Data Brief; 2023 Jun; 48():109062. PubMed ID: 37006387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance-Based Assessment of Bridges with Novel SMA-Washer-Based Self-Centering Rocking Piers.
    Chen J; Liang D; You X; Liang H
    Materials (Basel); 2022 Sep; 15(19):. PubMed ID: 36233929
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.