BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

374 related articles for article (PubMed ID: 32344300)

  • 1. Utilization of rice husk wastes in synthesis of graphene oxide-based carbonaceous nanocomposites.
    Liou TH; Wang PY
    Waste Manag; 2020 May; 108():51-61. PubMed ID: 32344300
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Sustainable Route to Synthesize Graphene Oxide/Ordered Mesoporous Carbon as Effect Nanocomposite Adsorbent.
    Liou TH; Wang PY
    J Nanosci Nanotechnol; 2020 May; 20(5):2867-2877. PubMed ID: 31635623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Utilization of Rice Husk Ash in the Preparation of Graphene-Oxide-Based Mesoporous Nanocomposites with Excellent Adsorption Performance.
    Liou TH; Liou YH
    Materials (Basel); 2021 Mar; 14(5):. PubMed ID: 33806672
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorption of Methyl Blue on Mesoporous Materials Using Rice Husk Ash as Silica Source.
    Nguyen NT; Chen SS; Nguyen NC; Nguyen HT; Tsai HH; Chang CT
    J Nanosci Nanotechnol; 2016 Apr; 16(4):4108-14. PubMed ID: 27451772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluoride removal from groundwater using chemically modified rice husk and corn cob activated carbon.
    Gebrewold BD; Kijjanapanich P; Rene ER; Lens PNL; Annachhatre AP
    Environ Technol; 2019 Sep; 40(22):2913-2927. PubMed ID: 29597982
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigating the effectiveness of rice husk-derived low-cost activated carbon in removing environmental pollutants: a study of its characterization.
    Kaya N; Carus Özkeser E; Yıldız Uzun Z
    Int J Phytoremediation; 2024 Feb; 26(3):427-447. PubMed ID: 37583119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of H3PO4-treated rice husk adsorbent and adsorption of copper(II) from aqueous solution.
    Zhang Y; Zheng R; Zhao J; Ma F; Zhang Y; Meng Q
    Biomed Res Int; 2014; 2014():496878. PubMed ID: 24678507
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlled synthesis of graphene oxide/silica hybrid nanocomposites for removal of aromatic pollutants in water.
    Abdelkhalek A; El-Latif MA; Ibrahim H; Hamad H; Showman M
    Sci Rep; 2022 Apr; 12(1):7060. PubMed ID: 35487929
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of hinosan from underground water using NH
    Hashemi MMR; Abolghasemi SS; Ashournia M; Modaberi H
    Environ Sci Pollut Res Int; 2019 Jul; 26(20):20344-20351. PubMed ID: 31098907
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis, characterization, and application of iron oxyhydroxide coated with rice husk for fluoride removal from aqueous media.
    Pillai P; Lakhtaria Y; Dharaskar S; Khalid M
    Environ Sci Pollut Res Int; 2020 Jun; 27(17):20606-20620. PubMed ID: 31368069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of RHA-silica/graphene oxide nanocomposites for removal of lead ions from water.
    Thy LTM; Hau DT; Lien LTK; Hung NDH; Tu TH; Nam HM; Hieu NH; Thanh Phong M
    Environ Technol; 2021 Jun; 42(14):2202-2210. PubMed ID: 31795840
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and characterization of a novel composite of rice husk-derived graphene oxide with titania microspheres (GO-RH/TiO
    Manpetch P; Singhapong W; Jaroenworaluck A
    Environ Sci Pollut Res Int; 2022 Sep; 29(42):63917-63935. PubMed ID: 35467189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characteristics of microporous/mesoporous carbons prepared from rice husk under base- and acid-treated conditions.
    Liou TH; Wu SJ
    J Hazard Mater; 2009 Nov; 171(1-3):693-703. PubMed ID: 19595505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of Rice Husk-Based MCM-41 for Removal of Aflatoxin B
    Li Y; Wang R; Luo X; Chen Z; Wang L; Zhou Y; Liu W; Cheng M; Zhang C
    Toxins (Basel); 2022 Jan; 14(2):. PubMed ID: 35202115
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of porous bio-char and activated carbon from rice husk by leaching ash and chemical activation.
    Ahiduzzaman M; Sadrul Islam AK
    Springerplus; 2016; 5(1):1248. PubMed ID: 27536531
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dye adsorption of mesoporous activated carbons produced from NaOH-pretreated rice husks.
    Lin L; Zhai SR; Xiao ZY; Song Y; An QD; Song XW
    Bioresour Technol; 2013 May; 136():437-43. PubMed ID: 23567714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rice husk waste into various template-engineered mesoporous silica materials for different applications: A comprehensive review on recent developments.
    Gebretatios AG; Kadiri Kanakka Pillantakath AR; Witoon T; Lim JW; Banat F; Cheng CK
    Chemosphere; 2023 Jan; 310():136843. PubMed ID: 36243081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison on the Surface Structure Properties along with Fe(II) and Mn(II) Removal Characteristics of Rice Husk Ash, Inactive
    Jiang Z; Cao B; Su G; Lu Y; Zhao J; Shan D; Zhang X; Wang Z; Zhang Y
    Biomed Res Int; 2016; 2016():7183951. PubMed ID: 28042571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alternative treatments to improve the potential of rice husk as adsorbent for methylene blue.
    Franco DS; Tanabe EH; Bertuol DA; Dos Reis GS; Lima ÉC; Dotto GL
    Water Sci Technol; 2017 Jan; 75(2):296-305. PubMed ID: 28112656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorption-desorption and leaching potential of glyphosate and aminomethylphosphonic acid in acidic Malaysian soil amended with cow dung and rice husk ash.
    Garba J; Samsuri AW; Othman R; Ahmad Hamdani MS
    Environ Monit Assess; 2018 Oct; 190(11):676. PubMed ID: 30368595
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.