BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 32344340)

  • 81. Grape skin phenolics as inhibitors of mammalian α-glucosidase and α-amylase--effect of food matrix and processing on efficacy.
    Lavelli V; Sri Harsha PS; Ferranti P; Scarafoni A; Iametti S
    Food Funct; 2016 Mar; 7(3):1655-63. PubMed ID: 26943361
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Different polyphenolic components of soft fruits inhibit alpha-amylase and alpha-glucosidase.
    McDougall GJ; Shpiro F; Dobson P; Smith P; Blake A; Stewart D
    J Agric Food Chem; 2005 Apr; 53(7):2760-6. PubMed ID: 15796622
    [TBL] [Abstract][Full Text] [Related]  

  • 83.
    Bui Thi Thuy L; Vu Thanh B; Nguyen Thuy D; Chu Thi Thanh H; Ha Van O; Nguyen Phuong T; Nguyen Manh T
    Nat Prod Res; 2023; 37(24):4121-4130. PubMed ID: 36661236
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Three flavanols delay starch digestion by inhibiting α-amylase and binding with starch.
    Jiang C; Chen Y; Ye X; Wang L; Shao J; Jing H; Jiang C; Wang H; Ma C
    Int J Biol Macromol; 2021 Mar; 172():503-514. PubMed ID: 33454330
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Mechanism of the inhibitory action of chestnut astringent skin extract on carbohydrate absorption.
    Tsujita T; Takaku T
    J Nutr Sci Vitaminol (Tokyo); 2008 Oct; 54(5):416-21. PubMed ID: 19001775
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Dietary Flavonoids and Acarbose Synergistically Inhibit α-Glucosidase and Lower Postprandial Blood Glucose.
    Zhang BW; Li X; Sun WL; Xing Y; Xiu ZL; Zhuang CL; Dong YS
    J Agric Food Chem; 2017 Sep; 65(38):8319-8330. PubMed ID: 28875706
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Comparative study of the antidiabetic potential of
    Tan DC; Idris KI; Kassim NK; Lim PC; Safinar Ismail I; Hamid M; Ng RC
    Pharm Biol; 2019 Dec; 57(1):345-354. PubMed ID: 31185767
    [No Abstract]   [Full Text] [Related]  

  • 88. Flavonol Glycosides: In Vitro Inhibition of DPPIV, Aldose Reductase and Combating Oxidative Stress are Potential Mechanisms for Mediating the Antidiabetic Activity of
    Abdel Motaal A; Salem HH; Almaghaslah D; Alsayari A; Bin Muhsinah A; Alfaifi MY; Elbehairi SEI; Shati AA; El-Askary H
    Molecules; 2020 Dec; 25(24):. PubMed ID: 33322431
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Identification of α-Glucosidase-Inhibitors in Edgeworthia gardneri (Wall.) Meisn. Using UPLC-Q-TOF-MS/MS Analysis.
    Li L; Dai Q; Zou B; Zhang Y; Zhang X; Liu L
    Plant Foods Hum Nutr; 2024 Jun; 79(2):381-386. PubMed ID: 38436827
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Evaluation of In Vitro α-Amylase and α-Glucosidase Inhibitory Potentials of 14 Medicinal Plants Constituted in Thai Folk Antidiabetic Formularies.
    Somtimuang C; Olatunji OJ; Ovatlarnporn C
    Chem Biodivers; 2018 Apr; 15(4):e1800025. PubMed ID: 29460340
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Inhibition of α-glucosidase by new prenylated flavonoids from euphorbia hirta L. herb.
    Sheliya MA; Rayhana B; Ali A; Pillai KK; Aeri V; Sharma M; Mir SR
    J Ethnopharmacol; 2015 Dec; 176():1-8. PubMed ID: 26477374
    [TBL] [Abstract][Full Text] [Related]  

  • 92. KINETICS OF MODULATORY ROLE OF
    Sabiu S; Ajani EO; Sunmonu TO; Ashafa AOT
    Afr J Tradit Complement Altern Med; 2017; 14(4):46-53. PubMed ID: 28638866
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Chemical profile of Roselle extract and its inhibitory activities on three digestive enzymes in vitro and in vivo.
    Yang D; Ding XY; Xu HX; Guo YX; Zhang QF
    Int J Biol Macromol; 2023 Dec; 253(Pt 3):126902. PubMed ID: 37714233
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Simultaneous quantification of ten constituents of Xanthoceras sorbifolia Bunge using UHPLC-MS methods and evaluation of their radical scavenging, DNA scission protective, and α-glucosidase inhibitory activities.
    Zhang Y; Ma JN; Ma CL; Qi Z; Ma CM
    Chin J Nat Med; 2015 Nov; 13(11):873-880. PubMed ID: 26614463
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Chemical Constituents of Malaysian U. cordata var. ferruginea and Their in Vitro α-Glucosidase Inhibitory Activities.
    Abdullah NH; Salim F; Ahmad R
    Molecules; 2016 Apr; 21(5):. PubMed ID: 27128898
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Carbohydrate Hydrolase-Inhibitory Activity of Juice-Based Phenolic Extracts in Correlation to Their Anthocyanin/Copigment Profile.
    Berger K; Ostberg-Potthoff JJ; Bakuradze T; Winterhalter P; Richling E
    Molecules; 2020 Nov; 25(22):. PubMed ID: 33182561
    [TBL] [Abstract][Full Text] [Related]  

  • 97. The α-amylase and α-glucosidase inhibitory effects of Irish seaweed extracts.
    Lordan S; Smyth TJ; Soler-Vila A; Stanton C; Ross RP
    Food Chem; 2013 Dec; 141(3):2170-6. PubMed ID: 23870944
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Improvement of blood glucose levels and obesity in mice given aronia juice by inhibition of dipeptidyl peptidase IV and α-glucosidase.
    Yamane T; Kozuka M; Konda D; Nakano Y; Nakagaki T; Ohkubo I; Ariga H
    J Nutr Biochem; 2016 May; 31():106-12. PubMed ID: 27133429
    [TBL] [Abstract][Full Text] [Related]  

  • 99. In vitro inhibition of starch digestive enzymes by ultrasound-assisted extracted polyphenols from Ascophyllum nodosum seaweeds.
    Aleixandre A; Gisbert M; Sineiro J; Moreira R; Rosell CM
    J Food Sci; 2022 Jun; 87(6):2405-2416. PubMed ID: 35590486
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Five New Phenolic Glycosides from Viburnum luzonicum.
    Chen J; Zhao M; Zhou H; Tang Y; Ji W; Shao J; Zhao C; Zhao C
    Chem Biodivers; 2023 Apr; 20(4):e202300246. PubMed ID: 36896855
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.