BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 32344340)

  • 121. Potential of Sorbus berry extracts for management of type 2 diabetes: Metabolomics investigation of
    Broholm SL; Gramsbergen SM; Nyberg NT; Jäger AK; Staerk D
    J Ethnopharmacol; 2019 Oct; 242():112061. PubMed ID: 31283956
    [TBL] [Abstract][Full Text] [Related]  

  • 122. α-Glucosidase inhibition by Tunisian Scabiosa arenaria Forssk. extracts.
    Hlila MB; Mosbah H; Majouli K; Msaada K; Jannet HB; Aouni M; Selmi B
    Int J Biol Macromol; 2015; 77():383-9. PubMed ID: 25841374
    [TBL] [Abstract][Full Text] [Related]  

  • 123. The involvement of phenolic-rich extracts from Galician autochthonous extra-virgin olive oils against the α-glucosidase and α-amylase inhibition.
    Figueiredo-González M; Reboredo-Rodríguez P; González-Barreiro C; Carrasco-Pancorbo A; Cancho-Grande B; Simal-Gándara J
    Food Res Int; 2019 Feb; 116():447-454. PubMed ID: 30716967
    [TBL] [Abstract][Full Text] [Related]  

  • 124. ANTI-OXIDATIVE, (α-GLUCOSIDASE AND α-AMYLASE INHIBITORY ACTIVITY OF VITEX DONIANA: POSSIBLE EXPLOITATION IN THE MANAGEMENT OF TYPE 2 DIABETES.
    Ibrahim MA; Koorbanally NA; Islam S
    Acta Pol Pharm; 2016 Sep; 73(5):1235-1247. PubMed ID: 29638064
    [TBL] [Abstract][Full Text] [Related]  

  • 125. Biological properties of Hertia cheirifolia L. flower extracts and effect of the nopol on α-glucosidase.
    Majouli K; Mahjoub MA; Rahim F; Hamdi A; Wadood A; Besbes Hlila M; Kenani A
    Int J Biol Macromol; 2017 Feb; 95():757-761. PubMed ID: 27939269
    [TBL] [Abstract][Full Text] [Related]  

  • 126. Inhibition of α-glucosidase and α-amylase by flavonoid glycosides from Lu'an GuaPian tea: molecular docking and interaction mechanism.
    Hua F; Zhou P; Wu HY; Chu GX; Xie ZW; Bao GH
    Food Funct; 2018 Aug; 9(8):4173-4183. PubMed ID: 29989631
    [TBL] [Abstract][Full Text] [Related]  

  • 127. Characterization, inhibitory activity and mechanism of polyphenols from faba bean (gallic-acid and catechin) on α-glucosidase: insights from molecular docking and simulation study.
    Choudhary DK; Chaturvedi N; Singh A; Mishra A
    Prep Biochem Biotechnol; 2020; 50(2):123-132. PubMed ID: 31702433
    [TBL] [Abstract][Full Text] [Related]  

  • 128. Annona muricata Linn. leaf as a source of antioxidant compounds with in vitro antidiabetic and inhibitory potential against α-amylase, α-glucosidase, lipase, non-enzymatic glycation and lipid peroxidation.
    Justino AB; Miranda NC; Franco RR; Martins MM; Silva NMD; Espindola FS
    Biomed Pharmacother; 2018 Apr; 100():83-92. PubMed ID: 29425747
    [TBL] [Abstract][Full Text] [Related]  

  • 129. Enrichment and Purification of Polyphenol Extract from Sphallerocarpus gracilis Stems and Leaves and in Vitro Evaluation of DNA Damage-Protective Activity and Inhibitory Effects of α-Amylase and α-Glucosidase.
    Ma T; Sun X; Tian C; Luo J; Zheng C; Zhan J
    Molecules; 2015 Dec; 20(12):21442-57. PubMed ID: 26633339
    [TBL] [Abstract][Full Text] [Related]  

  • 130. Rational in silico design of novel α-glucosidase inhibitory peptides and in vitro evaluation of promising candidates.
    Ibrahim MA; Bester MJ; Neitz AW; Gaspar ARM
    Biomed Pharmacother; 2018 Nov; 107():234-242. PubMed ID: 30096627
    [TBL] [Abstract][Full Text] [Related]  

  • 131. In vitro and in vivo inhibitory activity of taxifolin on three digestive enzymes.
    Su H; Ruan YT; Li Y; Chen JG; Yin ZP; Zhang QF
    Int J Biol Macromol; 2020 May; 150():31-37. PubMed ID: 32035149
    [TBL] [Abstract][Full Text] [Related]  

  • 132. The in vitro evaluation of antioxidative activity, α-glucosidase and α-amylase enzyme inhibitory of natural phenolic extracts.
    Djeridane A; Hamdi A; Bensania W; Cheifa K; Lakhdari I; Yousfi M
    Diabetes Metab Syndr; 2015; 9(4):324-31. PubMed ID: 25470628
    [TBL] [Abstract][Full Text] [Related]  

  • 133. In vitro and in vivo Inhibitory Activity of C-glycoside Flavonoid Extracts from Mung Bean Coat on Pancreatic Lipase and α-glucosidase.
    Ruan JC; Peng RY; Chen YT; Xu HX; Zhang QF
    Plant Foods Hum Nutr; 2023 Jun; 78(2):439-444. PubMed ID: 37351712
    [TBL] [Abstract][Full Text] [Related]  

  • 134. Plant non-starch polysaccharides that inhibit key enzymes linked to type 2 diabetes mellitus.
    Liu D; Gao H; Tang W; Nie S
    Ann N Y Acad Sci; 2017 Aug; 1401(1):28-36. PubMed ID: 28891092
    [TBL] [Abstract][Full Text] [Related]  

  • 135.
    Kajszczak D; Kowalska-Baron A; Sosnowska D; Podsędek A
    Molecules; 2022 May; 27(10):. PubMed ID: 35630596
    [TBL] [Abstract][Full Text] [Related]  

  • 136. Inhibitory activity of (-)-epicatechin-3,5-O-digallate on α-glucosidase and in silico analysis.
    Kim JH; Kim HY; Yang SY; Kim JB; Jin CH; Kim YH
    Int J Biol Macromol; 2018 Feb; 107(Pt A):1162-1167. PubMed ID: 28958819
    [TBL] [Abstract][Full Text] [Related]  

  • 137. Hypoglycemic activity of immature persimmon (Diospyros kaki Thunb.) extracts and its inhibition mechanism for α-amylase and α-glucosidase.
    Han Z; Ren W; Liu X; Lin N; Qu J; Duan X; Liu B
    Int J Biol Macromol; 2024 Feb; 257(Pt 2):128616. PubMed ID: 38070815
    [TBL] [Abstract][Full Text] [Related]  

  • 138. Enzyme inhibitory activities of phenolic compounds in pecan and the effect on starch digestion.
    Feng J; Kong F
    Int J Biol Macromol; 2022 Nov; 220():117-123. PubMed ID: 35963356
    [TBL] [Abstract][Full Text] [Related]  

  • 139. Effect of quercetin on the in vitro Tartary buckwheat starch digestibility.
    Zhou Y; Jiang Q; Ma S; Zhou X
    Int J Biol Macromol; 2021 Jul; 183():818-830. PubMed ID: 33965481
    [TBL] [Abstract][Full Text] [Related]  

  • 140. Inhibitory properties of polyphenols in Malus "Winter Red" crabapple fruit on α-glucosidase and α-amylase using improved methods.
    Xiao Z; Yang R; Wang H; Cui X; Zhang Y; Yuan Y; Yue T; Li P
    J Food Biochem; 2021 Oct; 45(10):e13942. PubMed ID: 34535900
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.