These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Comparison of photoemission performance of a GaAs photocathode between white light and monochromatic light illumination during activation. Feng C; Liu J; Zhang Y; Qian Y; Song Y; Bao Y; Zhao J Appl Opt; 2019 Nov; 58(32):8751-8756. PubMed ID: 31873652 [TBL] [Abstract][Full Text] [Related]
6. Mie-type GaAs nanopillar array resonators for negative electron affinity photocathodes. Peng X; Poelker M; Stutzman M; Tang B; Zhang S; Zou J Opt Express; 2020 Jan; 28(2):860-874. PubMed ID: 32121807 [TBL] [Abstract][Full Text] [Related]
7. Transport and lifetime enhancement of photoexcited spins in GaAs by surface acoustic waves. Sogawa T; Santos PV; Zhang SK; Eshlaghi S; Wieck AD; Ploog KH Phys Rev Lett; 2001 Dec; 87(27 Pt 1):276601. PubMed ID: 11800904 [TBL] [Abstract][Full Text] [Related]
8. Subwavelength photocathodes via metal-assisted chemical etching of GaAs for solar hydrogen generation. Choi K; Kim K; Moon IK; Bang J; Oh J Nanoscale; 2019 Aug; 11(32):15367-15373. PubMed ID: 31389459 [TBL] [Abstract][Full Text] [Related]
9. Electrical and Optoelectronic Properties Enhancement of n-ZnO/p-GaAs Heterojunction Solar Cells via an Optimized Design for Higher Efficiency. Derbali L Materials (Basel); 2022 Sep; 15(18):. PubMed ID: 36143577 [TBL] [Abstract][Full Text] [Related]
10. Quantification of propagating and standing surface acoustic waves by stroboscopic X-ray photoemission electron microscopy. Foerster M; Statuto N; Casals B; Hernández-Mínguez A; Finizio S; Mandziak A; Aballe L; Hernàndez Ferràs JM; Macià F J Synchrotron Radiat; 2019 Jan; 26(Pt 1):184-193. PubMed ID: 30655484 [TBL] [Abstract][Full Text] [Related]
11. Effect of different epitaxial structures on GaAs photoemission. Zou J; Zhang Y; Deng W; Jin J; Chang B Appl Opt; 2011 Sep; 50(27):5228-34. PubMed ID: 21947040 [TBL] [Abstract][Full Text] [Related]
12. Sound-driven single-electron transfer in a circuit of coupled quantum rails. Takada S; Edlbauer H; Lepage HV; Wang J; Mortemousque PA; Georgiou G; Barnes CHW; Ford CJB; Yuan M; Santos PV; Waintal X; Ludwig A; Wieck AD; Urdampilleta M; Meunier T; Bäuerle C Nat Commun; 2019 Oct; 10(1):4557. PubMed ID: 31594936 [TBL] [Abstract][Full Text] [Related]
13. Photoemission from Bialkali Photocathodes through an Atomically Thin Protection Layer. Liu F; Guo L; DeFazio J; Pavlenko V; Yamamoto M; Moody NA; Yamaguchi H ACS Appl Mater Interfaces; 2022 Jan; 14(1):1710-1717. PubMed ID: 34935342 [TBL] [Abstract][Full Text] [Related]
14. Photoemission from advanced heterostructured Al(x)Ga(1-x)As/GaAs photocathodes under multilevel built-in electric field. Feng C; Zhang Y; Qian Y; Chang B; Shi F; Jiao G; Zou J Opt Express; 2015 Jul; 23(15):19478-88. PubMed ID: 26367606 [TBL] [Abstract][Full Text] [Related]
15. Comparison of degradation and recaesiation between GaAs and AlGaAs photocathodes in an unbaked vacuum system. Feng C; Zhang Y; Shi F; Qian Y; Cheng H; Zhang J; Liu X; Zhang X Appl Opt; 2017 Mar; 56(9):2568-2573. PubMed ID: 28375369 [TBL] [Abstract][Full Text] [Related]
16. Enhancement of photoemission capability and electron collection efficiency of field-assisted GaN nanowire array photocathode. Liu L; Xia S; Diao Y; Lu F; Tian J Nanotechnology; 2020 Jan; 31(2):025201. PubMed ID: 31539893 [TBL] [Abstract][Full Text] [Related]
17. Comparative study of Al(x)Ga(1-x)As/GaAs photocathodes with different aluminum concentrations by surface photovoltage spectroscopy. Jiao G; Hu C; Liu J; Qian Y Appl Opt; 2015 Oct; 54(28):8473-8. PubMed ID: 26479625 [TBL] [Abstract][Full Text] [Related]
18. Influence of ion beam surface treatment on the emission performance of photocathodes. Liu Y; Li F; Tian H; Wang G; Wang X Nanoscale Adv; 2022 Aug; 4(17):3517-3523. PubMed ID: 36134348 [TBL] [Abstract][Full Text] [Related]
19. High-frequency acoustic charge transport in GaAs nanowires. Büyükköse S; Hernández-Mínguez A; Vratzov B; Somaschini C; Geelhaar L; Riechert H; van der Wiel WG; Santos PV Nanotechnology; 2014 Apr; 25(13):135204. PubMed ID: 24595075 [TBL] [Abstract][Full Text] [Related]
20. Effect of graded bandgap structure on photoelectric performance of transmission-mode Al Feng C; Zhang Y; Liu J; Qian Y; Liu X; Shi F; Cheng H Appl Opt; 2017 Nov; 56(32):9044-9049. PubMed ID: 29131191 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]