These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1103 related articles for article (PubMed ID: 32344599)

  • 21. Advances in base editing with an emphasis on an AAV-based strategy.
    Kuang J; Lyu Q; Wang J; Cui Y; Zhao J
    Methods; 2021 Oct; 194():56-64. PubMed ID: 33774157
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CRISPR-Cas nucleases and base editors for plant genome editing.
    Gürel F; Zhang Y; Sretenovic S; Qi Y
    aBIOTECH; 2020 Jan; 1(1):74-87. PubMed ID: 36305010
    [TBL] [Abstract][Full Text] [Related]  

  • 23. CRISPR-induced indels and base editing using the Staphylococcus aureus Cas9 in potato.
    Veillet F; Kermarrec MP; Chauvin L; Chauvin JE; Nogué F
    PLoS One; 2020; 15(8):e0235942. PubMed ID: 32804931
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Progress in the application of CRISPR: From gene to base editing.
    Wu W; Yang Y; Lei H
    Med Res Rev; 2019 Mar; 39(2):665-683. PubMed ID: 30171624
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CRISPR-Cas9 and CRISPR-Assisted Cytidine Deaminase Enable Precise and Efficient Genome Editing in Klebsiella pneumoniae.
    Wang Y; Wang S; Chen W; Song L; Zhang Y; Shen Z; Yu F; Li M; Ji Q
    Appl Environ Microbiol; 2018 Dec; 84(23):. PubMed ID: 30217854
    [No Abstract]   [Full Text] [Related]  

  • 26. Development of an Efficient C-to-T Base-Editing System and Its Application to Cellulase Transcription Factor Precise Engineering in Thermophilic Fungus
    Zhang C; Li N; Rao L; Li J; Liu Q; Tian C
    Microbiol Spectr; 2022 Jun; 10(3):e0232121. PubMed ID: 35608343
    [No Abstract]   [Full Text] [Related]  

  • 27. A blueprint for gene function analysis through Base Editing in the model plant Physcomitrium (Physcomitrella) patens.
    Guyon-Debast A; Alboresi A; Terret Z; Charlot F; Berthier F; Vendrell-Mir P; Casacuberta JM; Veillet F; Morosinotto T; Gallois JL; Nogué F
    New Phytol; 2021 May; 230(3):1258-1272. PubMed ID: 33421132
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prime editing in plants and mammalian cells: Mechanism, achievements, limitations, and future prospects.
    Hillary VE; Ceasar SA
    Bioessays; 2022 Sep; 44(9):e2200032. PubMed ID: 35750651
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Programmable RNA base editing via targeted modifications.
    Song J; Zhuang Y; Yi C
    Nat Chem Biol; 2024 Mar; 20(3):277-290. PubMed ID: 38418907
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Getting better all the time - recent progress in the development of CRISPR/Cas-based tools for plant genome engineering.
    Capdeville N; Schindele P; Puchta H
    Curr Opin Biotechnol; 2023 Feb; 79():102854. PubMed ID: 36455451
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Advances in application of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 system in stem cells research].
    Sun SJ; Huo JH; Geng ZJ; Sun XY; Fu XB
    Zhonghua Shao Shang Za Zhi; 2018 Apr; 34(4):253-256. PubMed ID: 29690746
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genome editing: An insight into disease resistance, production efficiency, and biomedical applications in livestock.
    Yuan YG; Liu SZ; Farhab M; Lv MY; Zhang T; Cao SX
    Funct Integr Genomics; 2024 May; 24(3):81. PubMed ID: 38709433
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development and Application of Base Editors.
    Yang B; Yang L; Chen J
    CRISPR J; 2019 Apr; 2(2):91-104. PubMed ID: 30998092
    [TBL] [Abstract][Full Text] [Related]  

  • 34. CRISPR-Cas9 DNA Base-Editing and Prime-Editing.
    Kantor A; McClements ME; MacLaren RE
    Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32872311
    [TBL] [Abstract][Full Text] [Related]  

  • 35. CRISPR-Cas12a-Assisted Recombineering in Bacteria.
    Yan MY; Yan HQ; Ren GX; Zhao JP; Guo XP; Sun YC
    Appl Environ Microbiol; 2017 Sep; 83(17):. PubMed ID: 28646112
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Precision genome editing in plants: state-of-the-art in CRISPR/Cas9-based genome engineering.
    Wada N; Ueta R; Osakabe Y; Osakabe K
    BMC Plant Biol; 2020 May; 20(1):234. PubMed ID: 32450802
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [CRISPR-Cas9 mediated genome editing in Caenorhabditis elegans].
    Meng X; Zhou H; Xu S
    Sheng Wu Gong Cheng Xue Bao; 2017 Oct; 33(10):1693-1699. PubMed ID: 29082717
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Virus-Based CRISPR/Cas9 Genome Editing in Plants.
    Liu H; Zhang B
    Trends Genet; 2020 Nov; 36(11):810-813. PubMed ID: 32828551
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Use of CRISPR/Cas Genome Editing Technology for Targeted Mutagenesis in Rice.
    Xu R; Wei P; Yang J
    Methods Mol Biol; 2017; 1498():33-40. PubMed ID: 27709567
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cas9-NG Greatly Expands the Targeting Scope of the Genome-Editing Toolkit by Recognizing NG and Other Atypical PAMs in Rice.
    Ren B; Liu L; Li S; Kuang Y; Wang J; Zhang D; Zhou X; Lin H; Zhou H
    Mol Plant; 2019 Jul; 12(7):1015-1026. PubMed ID: 30928635
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 56.